精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=alnx,g(x)=$\frac{1}{2}{x^2}$.
(I)若a>0,求h(x)=f(x)-g(x)的单调区间;
(Ⅱ)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值;
(Ⅲ)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)<(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)构造函数$t(x)=\frac{m}{2}{x^2}-xlnx(x>0)$,求出函数的导数,分离参数得:$m≥\frac{lnx+1}{x}$恒成立,根据函数的单调性求出m的范围即可;
(Ⅲ)分离参数得:$a≥\frac{{\frac{1}{2}{x^2}-x}}{x-lnx}$,设$y=\frac{{\frac{1}{2}{x^2}-x}}{x-lnx}$,根据函数的单调性求出a的范围即可.

解答 解:(Ⅰ)(3分)$h(x)=alnx-\frac{1}{2}{x^2}$,
所以${h^'}(x)=\frac{a}{x}-x=\frac{{a-{x^2}}}{x}>0(x>0)$
因为a>0所以$0<x<\sqrt{a}$,
则f(x)的增区间为$(0,\sqrt{a})$,减区间为$(\sqrt{a},+∞)$
(Ⅱ)(5分)当a=1,f(x)=lnx.
由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,
得mg(x1)-x1f(x1)>mg(x2)-x2f(x2)恒成立,
设$t(x)=\frac{m}{2}{x^2}-xlnx(x>0)$.
由题意知 x1>x2>0,故当x∈(0,+∞)时函数t(x)单调递增,
∴t'(x)=mx-lnx-1≥0恒成立,
即$m≥\frac{lnx+1}{x}$恒成立,
因此,记 $y=\frac{lnx+1}{x}$,得$y'(x)=\frac{-lnx}{x^2}$,
∵函数在(0,1)上单调递增,在(1,+∞)上单调递减,
∴函数h(x)在x=1时取得极大值,并且这个极大值就是函数h(x)的最大值,
由此可得h(x)max=h(1)=1,故m≥1,
结合已知条件m∈Z,m≤1,可得m=1.
(Ⅲ)(6分)不等式f(x)+2g'(x)<(a+3)x-g(x),
即为$alnx+2x≤(a+3)x-\frac{1}{2}{x^2}$,
化简得:$a(x-lnx)≥\frac{1}{2}{x^2}-x$,
由x∈[1,e]知x-lnx>0,因而$a≥\frac{{\frac{1}{2}{x^2}-x}}{x-lnx}$,设$y=\frac{{\frac{1}{2}{x^2}-x}}{x-lnx}$,
由$y'=\frac{{(x-1)(x-lnx)-(1-\frac{1}{x})(\frac{1}{2}{x^2}-x)}}{{{{(x-lnx)}^2}}}=\frac{{(x-1)(\frac{1}{2}x+1-lnx)}}{{{{(x-lnx)}^2}}}$
∵当 x∈(1,e)时 x-1>0,$\frac{1}{2}x+1-lnx>0$,
∴y'>0在 x∈[1,e]时成立.
由不等式有解,可得知$a≥{y_{min}}=-\frac{1}{2}$,
即实数a的取值范围是$[-\frac{1}{2},+∞)$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.集合A={x|x2+2x-3=0,x∈R},B={x|kx+1=0,x∈R},则B?A的一个充分非必要条件是k=-1(或k=$\frac{1}{3}$或k=0)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=|lnx|,关于x的不等式f(x)-f(x0)≥c(x-x0)的解集为(0,+∞),c为常数,当x0=1时,c的取值范围是[-1,1];当x0=$\frac{1}{2}$时,c的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式|x+1|-|x-2|>log2a的解集为R,则实数a的取值范围为(  )
A.(0,8)B.(8,+∞)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足(x-1)2+(y-1)2≤1,则|y-x-2|+|x+2y+2|的最大值是(  )
A.6B.$\sqrt{2}$+$\sqrt{5}$C.7+$\sqrt{5}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=lnx-x-mx在区间[1,e2]内有唯一的零点,则实数m的取值范围是[-1,$\frac{2}{{e}^{2}}$-1)∪{$\frac{1}{e}$-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线y=x-b与曲线$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ∈[0,2π])有两个不同的公共点,则实数b的取值范围为(  )
A.(2-$\sqrt{2}$,1)B.[2-$\sqrt{2}$,2+$\sqrt{2}$]C.(-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞)D.(2-$\sqrt{2}$,2+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C;x2+y2+6x-2y+k=0,直线l:2x-y+2=0.
(1)求实数k的取值范围;
(2)若圆C与直线l交于A,B两点,且|AB|=2,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{a{x^2}+x+b}}{x^2}$的单调递减区间为(-∞,0)和(0,+∞).
(1)求实数b的值;
(2)当x>0时,f2(x)≤x-2ex,求正数a的取值范围.

查看答案和解析>>

同步练习册答案