精英家教网 > 高中数学 > 题目详情
20.若关于x的不等式|x+1|-|x-2|>log2a的解集为R,则实数a的取值范围为(  )
A.(0,8)B.(8,+∞)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,+∞)

分析 令f(x)=|x+1|-|x-2|,依题意,log2a<f(x)min,解之即可得实数a的取值范围.

解答 解:令f(x)=|x+1|-|x-2|,
∵不等式|x+1|-|x-2|>log2a的解集为R,
∴log2a<|x+1|-|x-2|对任意实数恒成立,
∴log2a<f(x)min
∵f(x)=||x+1|-|x-2||≤|(x+1)-(x-2)|=3,
∴f(x)min=-3.
∴log2a<-3,
∴0<a<$\frac{1}{8}$.
故选:C.

点评 本题考查绝对值不等式的解法,考查构造函数思想与等价转化思想,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-x2-1,x∈R.
(1)求证:f(x)≥-x2+x;
(2)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数x,y满足条件|x-1|+|y-1|≤2,则2x+y的最大值为(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=|2x+3|,g(x)=-|x-2|+1
(Ⅰ)解不等式f(x)>|x-1|
(Ⅱ)若f(x)-2g(x)的最小值是m,且4a2+b2=m(ab≠0),求$\frac{1}{{a}^{2}}$+$\frac{9}{{b}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线ax+2y+1=0垂直平分圆x2+y2-2x+2ay=0的一条弦,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F(x)=f(x)-g(x),其中f(x)=$lo{g}_{\frac{1}{2}}$(x-2),当点(x,y)在y=f(x)的图象上时,就有(2x,2y)在y=g(x)的图象上.
(1)求g(x)的解析式;
(2)解不等式F(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=alnx,g(x)=$\frac{1}{2}{x^2}$.
(I)若a>0,求h(x)=f(x)-g(x)的单调区间;
(Ⅱ)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值;
(Ⅲ)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)<(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数r(x)=$\frac{1-x}{1+x}$,
(1)若f(x)=r(x)lnx,求函数f(x)的单调区间和最大值;
(2)若f(x)=$\frac{lnx}{ar(x)}$,且对任意x∈(0,1),恒有f(x)<-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx,
(1)若f(x)≥$\frac{t}{x}$-lnx (t为实数)恒成立,求t的取值范围;
(2)当m>0时,讨论F(x)=f(x)+$\frac{{x}^{2}}{2}$-$\frac{{m}^{2}+1}{m}$x在区间(0,2)上极值点的个数.

查看答案和解析>>

同步练习册答案