精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=ex-x2-1,x∈R.
(1)求证:f(x)≥-x2+x;
(2)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而证明结论;
(2)问题转化为$\frac{f(x)}{x}>k$对任意的x∈(0,+∞)恒成立,令$ϕ(x)=\frac{f(x)}{x},x>0$,根据函数的单调性求出k的范围即可.

解答 证明:(1)令g(x)=f(x)+x2-x=ex-x-1,
由g'(x)=ex-1=0得x=0,
当x∈(-∞,0)时,g'(x)<0,g(x)单调递减,
当x∈(0,+∞)时,g'(x)>0,g(x)单调递增,
∴g(x)min=g(0)=0,从而f(x)≥-x2+x;
解:(2)f(x)>kx对任意的x∈(0,+∞)恒成立
?$\frac{f(x)}{x}>k$对任意的x∈(0,+∞)恒成立,
令$ϕ(x)=\frac{f(x)}{x},x>0$,
∴$ϕ'(x)=\frac{xf'(x)-f(x)}{x^2}=\frac{{x({e^x}-2x)-({e^x}-{x^2}-1)}}{x^2}=\frac{{(x-1)({e^x}-x-1)}}{x^2}$,
由(1)可知当x∈(0,+∞)时,ex-x-1>0恒成立,
令φ'(x)>0,得x>1;g'(x)<0得0<x<1,
∴φ(x)的增区间为(1,+∞),减区间为(0,1),φ(x)min=φ(1)=e-2,
∴k<φ(x)min=φ(1)=e-2,
∴实数k的取值范围为(-∞,e-2).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.极坐标方程ρ=2cosθ所表示的曲线是(  )
A.一条直线B.一条拋物线C.一条双曲线D.一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以直角坐标系xOy的原点O为极点,x正半轴为极轴建立极坐标系,已知曲线C的方程是ρ2-2ρcosθ-2$\sqrt{3}$ρsinθ+3=0,点A是曲线C与Y轴的交点,直线l的方程是ρcos(θ+$\frac{π}{6}$)=$\frac{{\sqrt{3}}}{2}$
(1)求曲线C的直角坐标方程和点A的极坐标;
(2)求以A点为圆心且与直线l相切的圆C′的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.今天为星期四,则今天后的第22016天是(  )
A.星期 二B.星期三C.星期四D.星期五

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-mxk(m,k∈R)定义域为(0,+∞).
(1)若k=2时,曲线y=f(x)在x=1和x=3处的切线互相平行,求实数m的值;
(2)若k=1时,函数f(x)在(1,+∞)上有最小值,求实数m的取值范围;
(3)若m=1时,函数f(x)在(1,+∞)上单调递增,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2lnx-a(x2-1),a∈R,若当x≥1时,f(x)≥0恒成立,则a的取值范围是(  )
A.(-∞,-1]B.(-∞,0]C.(-∞,1]D.$(-∞,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.集合A={x|x2+2x-3=0,x∈R},B={x|kx+1=0,x∈R},则B?A的一个充分非必要条件是k=-1(或k=$\frac{1}{3}$或k=0)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\frac{b}{x+3}$+$\frac{b}{x+a}$为奇函数,常数b≠0,则常数a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式|x+1|-|x-2|>log2a的解集为R,则实数a的取值范围为(  )
A.(0,8)B.(8,+∞)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,+∞)

查看答案和解析>>

同步练习册答案