| A. | (-∞,-1] | B. | (-∞,0] | C. | (-∞,1] | D. | $(-∞,\frac{1}{2}]$ |
分析 由已知x≥1时,f(x)min>0,f′(x)=x(2lnx+1-2a),x≥1,由此利用导数性质能求出a的取值范围.
解答 解:由已知,即x≥1时,f(x)min>0,
f′(x)=x(2lnx+1-2a),x≥1,
当1-2a≥0,即a≤$\frac{1}{2}$时,f′(x)≥0恒成立,
∴f(x)单调增,
∴f(x)min=f(1)=0,即a≤$\frac{1}{2}$时满足f(x)≥0恒成立;
当1-2a<0,即a>$\frac{1}{2}$时,由f′(x)=0,得x=${e}^{a-\frac{1}{2}}$>1,
∴x∈(1,${e}^{a-\frac{1}{2}}$)时,f(x)单调减,即x∈(1,${e}^{a-\frac{1}{2}}$)时,
∴f(x)<f(1)=0与题设矛盾,
即a>$\frac{1}{2}$时,不能满足f(x)≥0恒成立,
综上,所求a的取值范围是a≤$\frac{1}{2}$;
故选:D.
点评 本题考查函数的最小值的求法,考查实数的取值范围的求法,解题时要认真审题,注意导数的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | $\sqrt{4+\frac{π^2}{9}}$ | C. | $\sqrt{1+\frac{π^2}{9}}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-2a | B. | 2-a-1 | C. | 1-2-a | D. | 2a-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com