| A. | 1-2a | B. | 2-a-1 | C. | 1-2-a | D. | 2a-1 |
分析 根据函数的奇偶性求出函数f(x)的表达式,根据函数表达式作出函数的图象,由图象可知函数的对称性,利用数形结合求出函数的所有零点之和即可.
解答 解:∵函数f(x)是奇函数,
∴当x<0时,f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}(1-x),-1<x<0}\\{1-|x+3|,x≤-1}\end{array}\right.$,![]()
作出函数f(x)在R图象如图:
由图象可知函数f(x)=a(0<a<1)有5个根,不妨设为x=a′,b,c,d,e.且a′<b<c<d<e,
则a′,b关于x=-3对称,d,e关于x=3对称,0<c<1,
∴a′+b=-6,d+e=6,
∵0<c<1,
∴由f(c)=a,得log2(c+1)=a,
∴c=2a-1,
∴零点之和为a′+b+c+d+e=-6+6+2a-1=2a-1.
故选:D.
点评 本题考查了函数的零点与函数的图象的关系应用及数形结合的思想应用,确画好图,把握图象的对称性是关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1] | B. | (-∞,0] | C. | (-∞,1] | D. | $(-∞,\frac{1}{2}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com