精英家教网 > 高中数学 > 题目详情
8.已知圆C:x2+y2=4.
(1)圆C被直线$\sqrt{3}$x+y-2$\sqrt{3}$=0截得的优弧与劣弧弧长之比为1:2;
(2)过点(-3,0)且分圆C所成的两段弧长之比为1:2的直线方程为y=±$\frac{\sqrt{2}}{2}$(x+3);;
(3)横截距为-1的直线分圆C所成的优弧与劣弧弧长之比k的取值范围是(1,2].

分析 (1)确定劣弧所对的圆心角为120°,优弧所对的圆心角为240°,即可求出圆C被直线$\sqrt{3}$x+y-2$\sqrt{3}$=0截得的优弧与劣弧弧长之比;
(2)利用圆心到直线的距离为$\frac{|3k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{3}$,即可得出结论;
(3)由题意,劣弧所对的圆心角最小为120°,最大为180°,即可得出横截距为-1的直线分圆C所成的优弧与劣弧弧长之比k的取值范围.

解答 解:(1)圆心到直线的距离为$\frac{2\sqrt{3}}{\sqrt{3+1}}$=$\sqrt{3}$,
∵圆的半径为2,
∴劣弧所对的圆心角为120°,
∴优弧所对的圆心角为240°,
∴圆C被直线$\sqrt{3}$x+y-2$\sqrt{3}$=0截得的优弧与劣弧弧长之比为1:2;
(2)由(1)可知劣弧所对的圆心角为120°,圆心到直线的距离为$\sqrt{3}$,
设直线方程为y=k(x+3),即kx-y+3k=0,
∴圆心到直线的距离为$\frac{|3k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{3}$,
∴k=±$\frac{\sqrt{2}}{2}$,
∴直线方程为y=±$\frac{\sqrt{2}}{2}$(x+3);
(3)由题意,劣弧所对的圆心角最小为120°,最大为180°,
∴横截距为-1的直线分圆C所成的优弧与劣弧弧长之比k的取值范围是(1,2].
故答案为:1:2;y=±$\frac{\sqrt{2}}{2}$(x+3);(1,2].

点评 本题考查直线与圆的位置关系,考查直线方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示,CD,GF为圆O的两条切线,其中E,F分别为圆O的两个切点,∠FCD=∠DFG.
(1)求证:AB∥CD;
(2)证明:$\frac{ED}{EC}$=$\frac{BD}{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆$\frac{{x}^{2}}{2}$+y2=1在y轴正半轴上的顶点为M,右焦点为F,延长线段MF与椭圆交于N.
(1)求直线MF的方程;
(2)求$\frac{|MF|}{|FN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,已知等边三角形的两个顶点是A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$),那么另一个顶点C的坐标可能是(  )
A.(4,$\frac{3π}{4}$)B.(2$\sqrt{3}$,$\frac{3π}{4}$)C.(2$\sqrt{3}$,π)D.(3,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求实数a的值;
(2)设x1,x2(x1<x2)是函数g(x)的两个极值点,若|g(x1)-g(x2)|≥$\frac{3}{4}$-ln2,求b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C的周长被y轴平分,且经过点A($\sqrt{3}$,0),B(0,3).
(1)求圆C的方程;
(2)过原点O作两条直线l1:y=k1x交圆C于点E(x1,y1)、F(x2,y2),作直线l2:y=k2x交圆C于点G(x3,y3)、H(x4,y4)(其中y2>0,y4>0),设EH交x轴于点Q,GF交x轴于点R(如图)
①求证:$\frac{{k}_{1}{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{{k}_{2}{x}_{3}{x}_{4}}{{x}_{3}+{x}_{4}}$;
②求证:|OQ|=|OR|.(证明过程不考虑EH或GF垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若a=0,求f(x)在区间[t,t+2](t>0)上的最小值;
(3)若函数g(x)=f(x)-x有两个极值点x1,x2,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{|x-3|-1,x∈[1,+∞)}\end{array}\right.$,则函数F(x)=f(x)-a,(0<a<1)的所有零点之和为(  )
A.1-2aB.2-a-1C.1-2-aD.2a-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知把函数$f(x)=sinx+\sqrt{3}cosx$的图象向右平移$\frac{π}{4}$个单位,再把横坐标扩大到原来的2倍,得到函数g(x),则函数g(x)的一条对称轴为(  )
A.$x=\frac{π}{6}$B.$x=\frac{5π}{6}$C.$x=\frac{π}{12}$D.$x=\frac{7π}{6}$

查看答案和解析>>

同步练习册答案