分析 (1)通过椭圆方程可知M(0,1)、F(1,0),进而利用两点式可得方程;
(2)联立直线MF与椭圆方程,利用韦达定理可知yN,利用距离公式或相似比计算即得结论.
解答 解:(1)依题意椭圆$\frac{{x}^{2}}{2}$+y2=1,M(0,1),F(1,0),
∴直线MF的方程为:$\frac{y-0}{x-1}$=$\frac{1-0}{0-1}$,
整理得:x+y-1=0;
(2)联立直线MF与椭圆方程,
消去x整理得:3y2-2y-1=0.
由韦达定理可知:1+yN=$\frac{2}{3}$,即yN=-$\frac{1}{3}$,xN=$\frac{4}{3}$
$\frac{|MF|}{|FN|}$=$\frac{{y}_{M}}{-{y}_{N}}$=$\frac{1}{\frac{1}{3}}$=3.
点评 本题考查椭圆的简单性质,涉及直线方程、三角形面积公式等基础知识,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com