精英家教网 > 高中数学 > 题目详情
11.已知直线l:2x+y+m=0(m∈R),圆O:x2+y2=4.
(1)若直线l将圆O分成的两端弧之比为1:3,求m的值;
(2)P是直线l上的任意一点,PA、PB是圆O的两条切线,A,B是切点,若四边形OAPB面积的最小值为2$\sqrt{5}$,求m的值;
(3)在(2)的条件下,以直线l上的点M为圆心所作的圆M与圆O有公共点,试求半径取最小值时圆M的方程.

分析 (1)直线l将圆O分成的两端弧之比为1:3,可得劣弧所对的圆心角为90°,即可求m的值;
(2)由“若四边形面积最小,则圆心与点P的距离最小时,即距离为圆心到直线的距离时,切线长PA,PB最小”,即可求m的值;
(3)以M为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,即可求出半径最小的圆的方程.

解答 解:(1)∵直线l将圆O分成的两端弧之比为1:3,
∴劣弧所对的圆心角为90°,
∴圆心到直线的距离d=$\frac{|m|}{\sqrt{5}}$=2×$\frac{\sqrt{2}}{2}$,
∴m=±$\sqrt{10}$;
(2)根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,
切线长PA,PB最小.切线长为$\sqrt{5}$,圆心到直线l的距离为3,∴d=$\frac{|m|}{\sqrt{5}}$=3,
∴m=±3$\sqrt{5}$;
(3)以M为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心M为过原点且与l垂直的直线l′与l的交点P0,所以r=3$\sqrt{5}$-2,
又l′:x-2y=0,联立l:2x+y+m=0得P0(-$\frac{6\sqrt{5}}{5}$,-$\frac{3\sqrt{5}}{5}$)或P0(-$\frac{6\sqrt{5}}{5}$,-$\frac{3\sqrt{5}}{5}$).
所以所求圆的方程为(x-$\frac{6\sqrt{5}}{5}$)2+(y-$\frac{3\sqrt{5}}{5}$)2=(3$\sqrt{5}$-2)2或(x+$\frac{6\sqrt{5}}{5}$)2+(y+$\frac{3\sqrt{5}}{5}$)2=(3$\sqrt{5}$-2)2

点评 本题考查直线与圆的位置关系,考查圆的方程,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=$\frac{1}{128000}{x^3}-\frac{3}{80}$x+8(0<x<120)
(1)当x=64千米/小时时,行驶1000千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,$\frac{π}{3}$),则|CP|为(  )
A.2$\sqrt{3}$B.$\sqrt{4+\frac{π^2}{9}}$C.$\sqrt{1+\frac{π^2}{9}}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设椭圆$\frac{{x}^{2}}{2}$+y2=1在y轴正半轴上的顶点为M,右焦点为F,延长线段MF与椭圆交于N.
(1)求直线MF的方程;
(2)求$\frac{|MF|}{|FN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=$\frac{1}{2}$AA1,D是棱AA1的中点,DC1⊥BD.
(1)证明:DC1⊥面BCD;
(2)设AA1=2,求点B1到平面BDC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,已知等边三角形的两个顶点是A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$),那么另一个顶点C的坐标可能是(  )
A.(4,$\frac{3π}{4}$)B.(2$\sqrt{3}$,$\frac{3π}{4}$)C.(2$\sqrt{3}$,π)D.(3,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求实数a的值;
(2)设x1,x2(x1<x2)是函数g(x)的两个极值点,若|g(x1)-g(x2)|≥$\frac{3}{4}$-ln2,求b的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若a=0,求f(x)在区间[t,t+2](t>0)上的最小值;
(3)若函数g(x)=f(x)-x有两个极值点x1,x2,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又BA1⊥AC1,CC1的中点为E.
(1)求三棱锥E-C1AB的体积;
(2)求平面ABE与平面AA1C1C夹角的余弦值.

查看答案和解析>>

同步练习册答案