精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=xlnx-$\frac{a}{2}$x2(a∈R).
(1)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若a=0,求f(x)在区间[t,t+2](t>0)上的最小值;
(3)若函数g(x)=f(x)-x有两个极值点x1,x2,求证:$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$>2ae.

分析 (1)求出f(x)的导函数,切线斜率k=f′(1),利用切线的定义,即可求出切线方程;
(2)求出函数的导数,通过讨论t的范围,求出函数的单调区间,从而求出函数的最小值即可;
(3)函数g(x)=f(x)-x有两个极值点x1、x2,即导函数g′(x)有两个不同的实数根x1、x2,对a进行分类讨论,令t=$\frac{{x}_{2}}{{x}_{1}}$>1,构造函数φ(t),利用函数φ(t)的单调性证明不等式.

解答 解:(1)当a=2时,f(x)=xlnx-x2,f′(x)=lnx+1-2x,
∴f(1)=-1,f′(1)=-1,
曲线y=f(x)在(1,f(1))处的切线方程为y=-x;
(2)a=0时,f(x)=xlnx,(x>0),
f′(x)=1+lnx,
当t>$\frac{1}{e}$时,f′(x)>0,
f(x)在[t,t+2]增,最小值为tlnt;
当0<t≤$\frac{1}{e}$时,令f′(x)>0,解得:x>$\frac{1}{e}$,令f′(x)<0,解得:x<$\frac{1}{e}$,
∴f(x)在[t,$\frac{1}{e}$]减,[$\frac{1}{e}$,t+2]增,最小值为-$\frac{1}{e}$.
证明:(3)g′(x)=f(x)′-1=lnx-ax,函数g(x)=f(x)-x有两个极值点x1、x2
即g′(x)=lnx-ax=0有两个不同的实根,
当a≤0时,g′(x)单调递增,g′(x)=0不可能有两个不同的实根;
当a>0时,设h(x)=lnx-ax,h′(x)=$\frac{1-ax}{x}$,
若0<x<$\frac{1}{a}$时,h′(x)>0,h(x)单调递增,
若x>$\frac{1}{a}$时,h′(x)<0,h(x)单调递减,
∴h($\frac{1}{a}$)=-lna-1>0,
∴0<a<$\frac{1}{e}$.
不妨设x2>x1>0,
∵g′(x1)=g′(x2)=0,
∴lnx1-ax1=0,lnx2-ax2=0,lnx1-lnx2=a(x1-x2),
先证 $\frac{1}{l{nx}_{1}}$+$\frac{1}{l{nx}_{2}}$>2,即证 $\frac{l{nx}_{2}-l{nx}_{1}}{{{x}_{2}-x}_{1}}$<$\frac{{x}_{1}{+x}_{2}}{{{2x}_{1}x}_{2}}$,
即证ln $\frac{{x}_{2}}{{x}_{1}}$<$\frac{{{{{x}_{2}}^{2}-x}_{1}}^{2}}{{{2x}_{1}x}_{2}}$=$\frac{1}{2}$($\frac{{x}_{2}}{{x}_{1}}$-$\frac{{x}_{1}}{{x}_{2}}$)
令t=$\frac{{x}_{2}}{{x}_{1}}$>1,即证lnt<$\frac{1}{2}$(t-$\frac{1}{t}$)
设φ(t)=lnt-$\frac{1}{2}$(t-$\frac{1}{t}$),则φ′(t)=$\frac{2t{-t}^{2}-1}{{2t}^{2}}$=$\frac{{-(t-1)}^{2}}{{2t}^{2}}$<0
函数φ(t)在(1,+∞)上单调递减,
∴φ(t)<φ(1)=0,
∴$\frac{1}{l{nx}_{1}}$+$\frac{1}{l{nx}_{2}}$>2,
又∵ae<1,
∴$\frac{1}{l{nx}_{1}}$+$\frac{1}{l{nx}_{2}}$>2ae.

点评 本题考查了,利用导数求函数的切线,运用分类讨论,等价转化思想证明不等式.是一道导数综合题,难题较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数y=log2(x-1)的零点是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l:2x+y+m=0(m∈R),圆O:x2+y2=4.
(1)若直线l将圆O分成的两端弧之比为1:3,求m的值;
(2)P是直线l上的任意一点,PA、PB是圆O的两条切线,A,B是切点,若四边形OAPB面积的最小值为2$\sqrt{5}$,求m的值;
(3)在(2)的条件下,以直线l上的点M为圆心所作的圆M与圆O有公共点,试求半径取最小值时圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆C:x2+y2=4.
(1)圆C被直线$\sqrt{3}$x+y-2$\sqrt{3}$=0截得的优弧与劣弧弧长之比为1:2;
(2)过点(-3,0)且分圆C所成的两段弧长之比为1:2的直线方程为y=±$\frac{\sqrt{2}}{2}$(x+3);;
(3)横截距为-1的直线分圆C所成的优弧与劣弧弧长之比k的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.今天为星期四,则今天后的第22016天是(  )
A.星期 二B.星期三C.星期四D.星期五

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|2x-a|+a(a∈R).
(1)当a=-1时,解不等式f(x)≤|2x-1|;
(2)若a≥0,f(x)≤2,求证:|x|≤a+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x2lnx-a(x2-1),a∈R,若当x≥1时,f(x)≥0恒成立,则a的取值范围是(  )
A.(-∞,-1]B.(-∞,0]C.(-∞,1]D.$(-∞,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x-5|+|x+4|.
(Ⅰ)求不等式f(x)≥12的解集;
(Ⅱ)若关于x的不等式f(x)-21-3a-1≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x+3|-m+1,m>0,f(x-3)≥0的解集为(-∞,-2]∪[2,+∞).
(Ⅰ)求m的值;
(Ⅱ)若?x∈R,f(x)≥|2x-1|-t2+$\frac{5}{2}$t成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案