| A. | (4,$\frac{3π}{4}$) | B. | (2$\sqrt{3}$,$\frac{3π}{4}$) | C. | (2$\sqrt{3}$,π) | D. | (3,π) |
分析 点C在AB的垂直平分线上,并且C点对应的极径为C对应的极角θ=$\frac{π}{4}$+$\frac{π}{2}$,或θ=$\frac{π}{4}$-$\frac{π}{2}$,即可得出.
解答
解:点C在AB的垂直平分线上,并且C点对应的极径为C对应的极角θ=$\frac{π}{4}$+$\frac{π}{2}$=$\frac{3π}{4}$,或θ=$\frac{π}{4}$-$\frac{π}{2}$=-$\frac{π}{4}$.即C点极坐标为:$(2\sqrt{3},\frac{3π}{4})$,或$(2\sqrt{3},-\frac{π}{4})$.
故选:B.
点评 本题考查了极坐标的应用、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com