分析 先令t=2x,则关于t方程为t2+at+a+1=0 有实根,结合二次方程根的分布即可解出实数a的取值范围.
解答 解:令2x=t>0,原方程即为t2+at+a+1=0
则原方程有实根等价于关于t的方程t2+at+a+1=0只有一正根.
于是有f(0)<0,即a+1<0,解得a<-1;
或f(0)=0并且$-\frac{a}{2}>0$,即a+1=0并且$-\frac{a}{2}>0$,解得a=-1.
或△=0并且$-\frac{a}{2}>0$,即:a2-4a-4=0并且a<0,解得a=2-2$\sqrt{2}$.
综上实数a的取值范围是(-∞,-1]∪{2-2$\sqrt{2}$}.
故答案为:(-∞,-1]∪{2-2$\sqrt{2}$}.
点评 本题主要考查了函数的零点与方程根的关系,以及利用二次方程根的分布求变量范围,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (4,$\frac{3π}{4}$) | B. | (2$\sqrt{3}$,$\frac{3π}{4}$) | C. | (2$\sqrt{3}$,π) | D. | (3,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com