精英家教网 > 高中数学 > 题目详情
1.若关于x的方程22x+a•2x+a+1=0只有一个实根,则实数a的取值范围为(-∞,-1]$∪\{2-2\sqrt{2}\}$.

分析 先令t=2x,则关于t方程为t2+at+a+1=0 有实根,结合二次方程根的分布即可解出实数a的取值范围.

解答 解:令2x=t>0,原方程即为t2+at+a+1=0
则原方程有实根等价于关于t的方程t2+at+a+1=0只有一正根.
于是有f(0)<0,即a+1<0,解得a<-1;
或f(0)=0并且$-\frac{a}{2}>0$,即a+1=0并且$-\frac{a}{2}>0$,解得a=-1.
或△=0并且$-\frac{a}{2}>0$,即:a2-4a-4=0并且a<0,解得a=2-2$\sqrt{2}$.
综上实数a的取值范围是(-∞,-1]∪{2-2$\sqrt{2}$}.
故答案为:(-∞,-1]∪{2-2$\sqrt{2}$}.

点评 本题主要考查了函数的零点与方程根的关系,以及利用二次方程根的分布求变量范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-$\frac{a-1}{x}$+2a(a∈R)
(Ⅰ)若f(x)的图象在点(1,f(1))处的切线与直线x+2y-1=0垂直,求a的值;
(Ⅱ)若f(x)≤ax+1在[1,+∞)恒成立,求a的取值范围;
(Ⅲ)若n∈N*,证明:ln(n+1)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{n}{2(n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线1过点A(4,0),且被圆(x+3)2+(y-1)2=4能截得的弦长为2$\sqrt{3}$.
(1)求圆心到直线l的距离;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,求点A(4,$\frac{7π}{4}$)到这条直线的距离$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,已知等边三角形的两个顶点是A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$),那么另一个顶点C的坐标可能是(  )
A.(4,$\frac{3π}{4}$)B.(2$\sqrt{3}$,$\frac{3π}{4}$)C.(2$\sqrt{3}$,π)D.(3,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)将下列极坐标方程化为直角坐标方程:ρ(2cosθ+5sinθ)-4=0;
(2)将下列参数方程化为普通方程:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=4sinφ}\end{array}}\right.$(φ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C的周长被y轴平分,且经过点A($\sqrt{3}$,0),B(0,3).
(1)求圆C的方程;
(2)过原点O作两条直线l1:y=k1x交圆C于点E(x1,y1)、F(x2,y2),作直线l2:y=k2x交圆C于点G(x3,y3)、H(x4,y4)(其中y2>0,y4>0),设EH交x轴于点Q,GF交x轴于点R(如图)
①求证:$\frac{{k}_{1}{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{{k}_{2}{x}_{3}{x}_{4}}{{x}_{3}+{x}_{4}}$;
②求证:|OQ|=|OR|.(证明过程不考虑EH或GF垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x3-$\frac{9a}{2}{x^2}$+6x.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若对?x∈[1,4]都有f(x)>0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线C1的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(其中θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ-ρsinθ+1=0.
(1)分别写出曲线C1与曲线C2的普通方程;
(2)若曲线C1与曲线C2交于A,B两点,求线段AB的长.

查看答案和解析>>

同步练习册答案