14£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}}\right.$£¨ÆäÖЦÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È+1=0£®
£¨1£©·Ö±ðд³öÇúÏßC1ÓëÇúÏßC2µÄÆÕͨ·½³Ì£»
£¨2£©ÈôÇúÏßC1ÓëÇúÏßC2½»ÓÚA£¬BÁ½µã£¬ÇóÏß¶ÎABµÄ³¤£®

·ÖÎö £¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}}\right.$£¨ÆäÖЦÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµÏûÈ¥²ÎÊý¦È¿ÉµÃÇúÏßC1µÄÆÕͨ·½³Ì£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È+1=0£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨2£©Ö±Ïß·½³ÌÓëÍÖÔ²ÁªÁ¢¿ÉµÃ7x2+8x-8=0£¬ÀûÓÃÒ»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}}\right.$£¨ÆäÖЦÈΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¦È¿ÉµÃ£ºÇúÏß${C_1}£º\frac{x^2}{4}+\frac{y^2}{3}=1$£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È-¦Ñsin¦È+1=0£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºÇúÏßC2£ºx-y+1=0£®
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{x-y+1=0}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$£¬µÃ7x2+8x-8=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x_1}+{x_2}=-\frac{8}{7}$£¬${x_1}{x_2}=-\frac{8}{7}$£¬
ÓÚÊÇ$|AB|=\sqrt{1+1}|{x_1}-{x_2}|=\sqrt{2}\sqrt{£¨{x_1}+{x_2}£©-4{x_1}{x_2}}=\frac{24}{7}$£®
¹ÊÏß¶ÎABµÄ³¤Îª$\frac{24}{7}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊý£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èô¹ØÓÚxµÄ·½³Ì22x+a•2x+a+1=0Ö»ÓÐÒ»¸öʵ¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬-1]$¡È\{2-2\sqrt{2}\}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Çóº¯Êýy=$\frac{1}{\sqrt{a{x}^{2}-2x}}$µÄ¶¨ÒåÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=x3+ax2+b£¨a£¬b¡ÊR£©
£¨1£©Èôº¯Êýf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ2£¬Çóa£¬bµÄÖµ£»
£¨2£©ÇóÊÔÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨3£©Èôb=c-a£¨ÊµÊýcÊÇaÓëÎ޹صij£Êý£©£¬µ±º¯Êýf£¨x£©ÓÐÈý¸ö²»Í¬µÄÁãµãʱ£¬aµÄȡֵ·¶Î§Ç¡ºÃÊÇ$£¨-¡Þ£¬-3£©¡È£¨1£¬\frac{3}{2}£©¡È£¨\frac{3}{2}£¬+¡Þ£©$£¬ÇócµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êý$f£¨x£©=lnx+\frac{1}{2}m{x^2}$£¨m¡ÊR£©£¬
£¨¢ñ£©ÇóÇúÏßy=f£¨x£©ÔÚ£¨1£¬f£¨1£©£©´¦µÄÇÐÏßÓëÖ±Ïßx+2y-5=0´¹Ö±£¬ÇómµÄÖµ£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ümx2+£¨m-1£©x-1ºã³ÉÁ¢£¬ÇóÕûÊýmµÄ×îСֵ£»
£¨¢ó£©Èôm=1£¬m¡ÊRÉèF£¨x£©=f£¨x£©+x£®ÇÒÕýʵÊýx1£¬x2Âú×ãF£¨x1£©=-F£¨x2£©£¬ÇóÖ¤£ºx1+x2¡Ý$\sqrt{3}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=lnx
£¨¢ñ£©Çóº¯Êý$F£¨x£©=\frac{f£¨x£©}{x}+\frac{1}{2}$µÄ×î´óÖµ£®
£¨¢ò£©Ö¤Ã÷£º$\frac{f£¨x£©}{x}+\frac{1}{2}£¼x-f£¨x£©$£»
£¨¢ó£©Èô²»µÈʽmf£¨x£©¡Ýa+x¶ÔËùÓеÄ$m¡Ê[{0£¬\frac{3}{2}}]£¬x¡Ê[{1£¬{e^2}}]$¶¼³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³»ú¹¹ÎªÁ˽âijµØÇøÖÐѧÉúÔÚУÔÂÏû·ÑÇé¿ö£¬Ëæ»ú³éÈ¡ÁË100ÃûÖÐѧÉú½øÐе÷²é£®ÈçͼÊǸù¾Ýµ÷²éµÄ½á¹û»æÖƵÄѧÉúÔÚУÔÂÏû·Ñ½ð¶îµÄƵÂÊ·Ö²¼Ö±·½Í¼£®ÒÑÖª[350£¬450£©£¬[450£¬550£©£¬[550£¬650£©Èý¸ö½ð¶î¶ÎµÄѧÉúÈËÊý³ÉµÈ²îÊýÁУ¬½«ÔÂÏû·Ñ½ð¶î²»µÍÓÚ550ÔªµÄѧÉú³ÆÎª¡°¸ßÏû·ÑȺ¡±£®

£¨¢ñ£©Çóm£¬nµÄÖµ£¬²¢ÇóÕâ100ÃûѧÉúÔÂÏû·Ñ½ð¶îµÄÑù±¾Æ½¾ùÊý$\overline x$£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨¢ò£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÄÜ·ñÓÐ90%µÄ°ÑÎÕÈÏΪ¡°¸ßÏû·ÑȺ¡±ÓëÐÔ±ðÓйأ¿
¸ßÏû·ÑȺ·Ç¸ßÏû·ÑȺºÏ¼Æ
ÄÐ
Ů1050
ºÏ¼Æ
£¨²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©
P£¨K2¡Ýk£©0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ex-2ax£¬g£¨x£©=ax2+1£¨a¡ÊR£©£®
£¨¢ñ£©É躯Êýh£¨x£©=g£¨x£©-f£¨x£©£¬Æäµ¼º¯ÊýΪh¡ä£¨x£©£¬Èôh¡ä£¨x£©ÔÚ[0£¬+¡Þ£©ÉϾßÓе¥µ÷ÐÔ£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬ÇóÖ¤£ºf£¨1£©+f£¨$\frac{1}{2}$£©+f£¨$\frac{1}{3}$£©+¡­+f£¨$\frac{1}{n}$£©£¾n+$\frac{1}{4}$£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¼«×ø±ê·½³Ì£º¦Ñsin¦È=sin2¦È±íʾµÄÇúÏßΪ£¨¡¡¡¡£©
A£®Ò»ÌõÖ±ÏߺÍÒ»¸öÔ²B£®Ò»ÌõÉäÏߺÍÒ»¸öÔ²
C£®Á½ÌõÖ±ÏßD£®Ò»¸öÔ²

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸