精英家教网 > 高中数学 > 题目详情
15.若直线ax+2y+1=0垂直平分圆x2+y2-2x+2ay=0的一条弦,则a=1.

分析 由题意可得直线ax+2y+1=0经过圆x2+y2-2x+2ay=0的圆心(1,-a),从而求得a的值.

解答 解:若直线ax+2y+1=0垂直平分圆x2+y2-2x+2ay=0的一条弦,则直线ax+2y+1=0经过圆x2+y2-2x+2ay=0的圆心(1,-a),
故有a-2a+1=0,求得a=1,
故答案为:1.

点评 本题主要考查直线和圆的位置关系,判断直线ax+2y+1=0经过圆x2+y2-2x+2ay=0的圆心(1,-a),是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-mxk(m,k∈R)定义域为(0,+∞).
(1)若k=2时,曲线y=f(x)在x=1和x=3处的切线互相平行,求实数m的值;
(2)若k=1时,函数f(x)在(1,+∞)上有最小值,求实数m的取值范围;
(3)若m=1时,函数f(x)在(1,+∞)上单调递增,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx+ax(a∈R).
(1)若a=-3,求函数f(x)的单调递增区间;
(2)若对任意的x∈(1,+∞),f(x)>(k+a-1)x-k恒成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=|lnx|,关于x的不等式f(x)-f(x0)≥c(x-x0)的解集为(0,+∞),c为常数,当x0=1时,c的取值范围是[-1,1];当x0=$\frac{1}{2}$时,c的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,离心率为$\frac{\sqrt{2}}{2}$,且直线2x+y-3=0与椭圆C相切.
(1)求椭圆C的标准方程;
(2)如图,点M是直线x=2上的一个动点,O为坐标原点过点F作0M的垂线,垂足为K,并延长FK与以OM为直径的圆交于点N,求证:$\overrightarrow{OM}$•$\overrightarrow{ON}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若关于x的不等式|x+1|-|x-2|>log2a的解集为R,则实数a的取值范围为(  )
A.(0,8)B.(8,+∞)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足(x-1)2+(y-1)2≤1,则|y-x-2|+|x+2y+2|的最大值是(  )
A.6B.$\sqrt{2}$+$\sqrt{5}$C.7+$\sqrt{5}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线y=x-b与曲线$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ∈[0,2π])有两个不同的公共点,则实数b的取值范围为(  )
A.(2-$\sqrt{2}$,1)B.[2-$\sqrt{2}$,2+$\sqrt{2}$]C.(-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞)D.(2-$\sqrt{2}$,2+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.5个人排成一排,若A、B、C三人左右顺序一定,那么不同排法有(  )
A.$A_5^5$B.$A_3^3•A_3^3$C.$\frac{A_5^5}{A_3^3}$D.$A_3^3$

查看答案和解析>>

同步练习册答案