精英家教网 > 高中数学 > 题目详情
设F1,F2分别是双曲线C:
x2
a2
-
y2
b2
=1的左,右焦点,点P(
6
2
2
2
)在此双曲线上,且PF1⊥PF2,则双曲线C的离心率P等于(  )
A、
2
2
B、
2
C、
3
D、
6
2
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:点P在双曲线上,所以带入双曲线方程可得
3
2a2
-
1
2b2
=1
   ①,而根据PF1⊥PF2得到(
6
2
+c)2+
1
2
+(
6
2
-c)2+
1
2
=4c2
    ②,所以由①②再结合b2=c2-a2即可求出a,c,从而求出离心率
c
a
解答: 解:根据已知条件得:
3
2a2
-
1
2b2
=1
(
6
2
+c)2+
1
2
+(
6
2
-c)2+
1
2
=4c2

解得
3
a2
-
1
c2-a2
=2
c2=2

∴解得a=1,c=
2

∴双曲线C的离心率为:
c
a
=
2

故选B.
点评:考查双曲线的标准方程,点在曲线上时,点的坐标和曲线方程的关系,以及两点间的距离公式,c2=a2+b2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某商场有四类食品,其中粮食类、植物油类、动物食品类及果蔬类分别有40种、10种、20种、20种,现采用分层抽样的方法抽取样本进行食品安全检测,若抽取的动物类食品有6种,则样本容量为(  )
A、18B、22C、27D、36

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|2x-y=0},集合B={(x,y)|x-y=3},则集合A∩B是(  )
A、{-6,-3}
B、{(-3,-6)}
C、{3,6}
D、(-3,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
4x+2
的定义域为(  )
A、{x|x≥-
1
2
}
B、(-
1
2
,+∞)
C、(-∞,-
1
2
)
D、{x|x≤-
1
2
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD的一个顶点坐标为A(-2,1),一组对边AB,CD的中点分别为M(3,0),N(-1,-2),求平行四边形的各个顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log 
1
2
(x2-4x)的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C的顶点在原点,焦点点为圆x2+y2-2x=0的圆心,
(Ⅰ)求抛物线C的方程;
(Ⅱ)设抛物线C上两个动点A、B满足|AF|+BF|=6线段AB的垂直平分线与x轴交于点M;
(1)求点M的坐标;
(2)当线段AB最长时,求△MAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1.其中a>0且a≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1和抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从它们每条曲线上至少取两个点,将其坐标记录于下表中:
x5-
2
4
2
2
6
2
y2
5
0-4
3
2
-
1
2
(Ⅰ)求C1和C2的方程;
(Ⅱ)过点S(0,-
1
3
)且斜率为k的动直线l交椭圆C1于A、B两点,在y轴上是否存在定点D,使以线段AB为直径的圆恒过这个点?若存在,求出D的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案