【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村
户贫困户.为了做到精准帮扶,工作组对这
户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标
.将指标
按照
,
,
,
,
分成五组,得到如图所示的频率分布直方图.规定若
,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当
时,认定该户为“亟待帮住户”.工作组又对这
户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.
![]()
(1)完成下面的列联表,并判断是否有
的把握认为绝对贫困户数与受教育水平不好有关:
受教育水平良好 | 受教育水平不好 | 总计 | |
绝对贫困户 |
| ||
相对贫困户 |
| ||
总计 |
|
(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于
的贫困户中,随机选取两户,用
表示所选两户中“亟待帮助户”的户数,求
的分布列和数学期望
.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
科目:高中数学 来源: 题型:
【题目】国庆70周年阅兵式上的女兵们是一道靓丽的风景线,每一名女兵都是经过层层筛选才最终入选受阅方队,筛选标准非常严格,例如要求女兵身高(单位:cm)在区间
内.现从全体受阅女兵中随机抽取200人,对她们的身高进行统计,将所得数据分为
,
,
,
,
五组,得到如图所示的频率分布直方图,其中第三组的频数为75,最后三组的频率之和为0.7.
![]()
(1)请根据频率分布直方图估计样本的平均数
和方差
(同一组中的数据用该组区间的中点值代表);
(2)根据样本数据,可认为受阅女兵的身高X(cm)近似服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)求
;
(ii)若从全体受阅女兵中随机抽取10人,求这10人中至少有1人的身高在174.28cm以上的概率.
参考数据:若
,则
,
,
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100
的有40人;在45名女性驾驶员中,平均车速不超过100
的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100
的人与性别有关.
平均车速超过100 | 平均车速不超过100 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100
的车辆数为
,若每次抽取的结果是相互独立的,求
的分布列和数学期望.
参考公式与数据:
,其中![]()
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
![]()
|
|
|
|
|
|
|
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中
.
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若旋转的弧度数
与单位时间内煤气输出量
成正比,那么
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,
,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义首项为1且公比为正数的等比数列为“M-数列”.
(1)已知等比数列{an}满足:
,求证:数列{an}为“M-数列”;
(2)已知数列{bn}满足:
,其中Sn为数列{bn}的前n项和.
①求数列{bn}的通项公式;
②设m为正整数,若存在“M-数列”{cn}
,对任意正整数k,当k≤m时,都有
成立,求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,抛物线
的焦点为F(1,0),E是抛物线的准线与x轴的交点,直线AB经过焦点F且与抛物线交于A,B两点,直线AE,BE分别交y轴于M,N两点,记
,
的面积分别为
.
![]()
(1)求抛物线C的标准方程;
(2)
是否为定值?若是,求出该定值;若不是,请说明理由;
(3)求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,抛物线
上的点到准线的最小距离为2.
(1)求抛物线
的方程;
(2)若过点
作互相垂直的两条直线
,
,
与抛物线
交于
,
两点,
与抛物线
交于
,
两点,
,
分别为弦
,
的中点,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com