【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100的有40人;在45名女性驾驶员中,平均车速不超过100的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100的人与性别有关.
平均车速超过100人数 | 平均车速不超过100人数 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100的车辆数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
参考公式与数据:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)填表见解析;有;(2)分布列见解析;期望为.
【解析】
(1)根据题目中的数据,完成列联表,求出,从而有99.5%的把握认为平均车速超过100km/h与性别有关;
(2)记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为,推导出服从二项分布,即,由此能求出的分布列与数学期望.
解:(1)
平均车速超过100km/h人数 | 平均车速不超过100km/h人数 | 合计 | |
男性驾驶员人数 | 40 | 15 | 55 |
女性驾驶员人数 | 20 | 25 | 45 |
合计 | 60 | 40 | 100 |
因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关;
(2)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为,
可取值是0,1,2,3,由题知,
有:,,,,
分布列为
0 | 1 | 2 | 3 | |
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的方程为,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求直线l的直角坐标方程和曲线C的参数方程;
(2)已知P、Q两点分别是曲线C和直线l上的动点,且直线的倾斜角为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“干支纪年法”是中国历法自古以来就使用的纪年方法,甲、乙、丙、丁、戊、已、庚、辛、壬、癸为十天干;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥为十二地支.“干支纪年法”是以一个天干和一个地支按上述顺序相配排列起来,天干在前,地支在后,已知2017年是丁酉年,2018年是戊戌年,2019年是已亥年,依此类推,则2080年是____________年.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,点在椭圆上,焦点为,圆O的直径为.
(1)求椭圆C及圆O的标准方程;
(2)设直线l与圆O相切于第一象限内的点P,且直线l与椭圆C交于两点.记 的面积为,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且,抛物线的通径与椭圆的右通径在同一直线上.
(1)求椭圆与抛物线的标准方程;
(2)过抛物线焦点且倾斜角为的直线与椭圆交于、两点,为椭圆的左焦点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.
求:(1)3只全是红球的概率;
(2)3只颜色全相同的概率;
(3)3只颜色不全相同的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村户贫困户.为了做到精准帮扶,工作组对这户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标.将指标按照,,,,分成五组,得到如图所示的频率分布直方图.规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当时,认定该户为“亟待帮住户”.工作组又对这户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.
(1)完成下面的列联表,并判断是否有的把握认为绝对贫困户数与受教育水平不好有关:
受教育水平良好 | 受教育水平不好 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于的贫困户中,随机选取两户,用表示所选两户中“亟待帮助户”的户数,求的分布列和数学期望.
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=,记∠APQ=θrad,地下电缆管线的总长度为y千米.
(1)将y表示成θ的函数,并写出θ的范围;
(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com