精英家教网 > 高中数学 > 题目详情

已知四棱柱ABCD-A1B1C1D1,侧棱与底面垂直,底面ABCD是菱形且∠BAD=60°,侧棱与底面边长均为2,则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为


  1. A.
    数学公式
  2. B.
    2
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:题目是求二面角的正弦值问题,根据给出的四棱柱ABCD-A1B1C1D1是直四棱柱,且底面为菱形这两个条件,连接底面菱形的对角线相交于一点O,再连接B1O后即可得到要求的二面角的平面角,然后结合题目给出的角的大小及棱的长度,在直角三角形中可求得则面AB1C与底面A1B1C1D1所成二面角的正弦值.
解答:解:如图,四棱柱ABCD-A1B1C1D1中,
∵侧棱与底面垂直,∴B1B⊥面ABCD,
∵AC?面ABCD,∴B1B⊥AC.
连接AC、BD,设AC∩BD=O,连接B1O,
∵ABCD是菱形,∴AC⊥BD,
∵B1B⊥AC,又BB1∩BD=B,
∴AC⊥面B1BD,
∵OB1?面B1BD,∴AC⊥OB1
∴∠B1OB为二面角B1-AC-B的平面角,
即面AB1C与底面ABCD所成的角,
∵面A1B1C1D1∥面ABCD,
亦即为面AB1C与底面A1B1C1D1所成的角.
∵底面ABCD是菱形,且∠BAD=60°,∴∠BAO=30°,
在直角三角形AOB中,∵∠BAO=30°,AB=2,∴OB=1.
再在直角三角形OBB1中,∵OB=1,BB1=2,∴

∴则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为
故选D.
点评:本题考查了空间中线面垂直的判定和性质,考查了二面角的平面角的找法,本题因给出的几何体具有较好的对称性,所以寻找二面角的平面角相对容易,如果二面角的平面角不易寻找时,涉及二面角的平面角问题可以借助于空间向量来处理,把二面角转化为平面法向量所成角的问题,此题属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AA1=2,底面四边形ABCD的边长均大于2,且∠DAB=45°,点P在底面ABCD内运动且在AB,AD上的射影分别为M,N,若|PA|=2,则三棱锥P-D1MN体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱柱ABCD-A1B1C1D1的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,AA1=2,E是侧棱AA1的中点,求
(1)求异面直线BD与B1E所成角的大小;
(2)求四面体AB1D1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱柱ABCD-A1B1C1D1中的底面是菱形,且∠DAB=∠A1AB=∠A1AD=60°,AD=1,AA1=a,F为棱BB的中点,M为线段AC的中点.设
AB
=
e1
AD
=
e2
AA1
=
e3
.试用向量法解下列问题:
(1)求证:直线MF∥平面ABCD;
(2)求证:直线MF⊥面A1ACC1
(3)是否存在a,使平面AFC1与平面ABCD所成二面角的平面角是30°?如果存在,求出相应的a 值,如果不存在,请说明理由.(提示:可设出两面的交线)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,已知四棱柱ABCD-A1B1C1D1的俯视图是边长为3的正方形,侧视图是长为3宽为
3
的矩形.
(1)求该四棱柱的体积;
(2)取DD1的中点E,证明:面BCE⊥面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AA1=3,∠BAA1=60°,E为棱C1D1的中点,则
AB
AE
=
 

查看答案和解析>>

同步练习册答案