| A. | $\frac{63}{65}$ | B. | $\frac{53}{65}$ | C. | $\frac{33}{65}$ | D. | $\frac{33}{65}$ |
分析 利用同角三角函数的基本关系求得sinα、sin(2α+β)的值,再根据sin(α+β)=sin[(2α+β)-α],利用两角差的正弦公式计算求得结果.
解答 解:∵锐角α,β满足cosα=$\frac{12}{13}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{5}{13}$,∴α∈(0,$\frac{π}{6}$),2α+β∈(0,$\frac{5π}{6}$).
∵cos(2α+β)=$\frac{3}{5}$,∴2α+β∈(0,$\frac{π}{2}$),sin(2α+β)=$\sqrt{{1-cos}^{2}(2α+β)}$=$\frac{4}{5}$,
那么sin(α+β)=sin[(2α+β)-α]=sin(2α+β)cosα-cos(2α+β)sinα=$\frac{4}{5}•\frac{12}{13}$-$\frac{3}{5}•\frac{5}{13}$=$\frac{33}{65}$,
故选:C.
点评 本题主要考查同角三角函数的基本关系,两角差的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ?x<0,$\frac{x}{x-1}$≤0 | B. | ?x>0,0≤x<1 | C. | ?x>0,$\frac{x}{x-1}$≤0 | D. | ?x<0,0≤x≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{k}{\sqrt{1+{k}^{2}}}$ | B. | $\frac{1}{\sqrt{1+{k}^{2}}}$ | C. | -$\frac{k}{\sqrt{1+{k}^{2}}}$ | D. | -$\frac{1}{\sqrt{1+{k}^{2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com