精英家教网 > 高中数学 > 题目详情
已知椭圆,F1,F2为其左、右焦点,P为椭圆C上任一点,的重心为G,内心I,且有(其中为实数),椭圆C的离心率e=(   )
A.B.C.D.
A

试题分析:设P(),∵G为的重心,∴G点坐标为 G(),∵,∴IG∥x轴,∴I的纵坐标为,在焦点中, =2c,∴=,又∵I为的内心,∴I的纵坐标即为内切圆半径,内心I把分为三个底分别为的三边,高为内切圆半径的小三角形,∴ =,∴ =•2c• =,∴2c=a,∴椭圆C的离心率e=,故选A
点评:求解椭圆中的离心率时往往用到椭圆的概念,此类问题还用到重心坐标公式,三角形内心的意义及其应用
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆)的离心率为,过右焦点且斜率为1的直线交椭圆两点,为弦的中点。
(1)求直线为坐标原点)的斜率
(2)设椭圆上任意一点,且,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2="2px" (p0)的焦点F的直线交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3.则此抛物线的方程为(    )

A.y2=—x
B.y2=9x
C.y2=x
D. y2=3x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线 y2 =" 4x" 的焦点作直线交抛物线于A(x1, y1)B(x2, y2)两点,如果=6,那么           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆长轴的一个顶点作圆的两条切线,切点分别为,若 (是坐标原点),则椭圆的离心率为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左、右焦点分别为F1、F2,过点 F1作倾斜角为30°的直线ll与双曲线的右支交于点P,若线段PF1的中点M落在y轴上,则双曲线的渐近线方程为                                                      (    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆+上,为焦点 且,则的面积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

我国发射的“神舟七号”飞船的运行轨道是以地球的中心为一个焦点的椭圆,近地点A距地面为千米,远地点B距地面为千米,地球半径为千米,则飞船运行轨道的短轴长为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案