精英家教网 > 高中数学 > 题目详情
过椭圆长轴的一个顶点作圆的两条切线,切点分别为,若 (是坐标原点),则椭圆的离心率为_________.
令这个顶点是H。由题意知,是等腰直角三角形,其中,又OA=b,可求得,由得,c=b,所以
试题分析:
点评:关于曲线的题目,一般都是通过画图找出里面的关系。本题还需要注意关系式,不要跟双曲线的关系式混淆。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,若直线轴交于点,与椭圆交于不同的两点,且。(14分)
(1)求椭圆的方程;
(2)求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,F1,F2为其左、右焦点,P为椭圆C上任一点,的重心为G,内心I,且有(其中为实数),椭圆C的离心率e=(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:的焦点坐标为),点M()在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为椭圆的两个焦点,过作椭圆的弦,若的周长为,则该椭圆的标准方程为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为椭圆的两个焦点,过的直线交椭圆于两点。若,则=          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设斜率为2的直线l过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率e的取值范围是(   )
A.e>B.e>C.1<e<D.1<e<

查看答案和解析>>

同步练习册答案