精英家教网 > 高中数学 > 题目详情
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
(1)(2)

试题分析:解:(Ⅰ)曲线的极坐标方程为,
∴曲线的直角坐标方程为.   
(Ⅱ)曲线的直角坐标方程为,为半圆弧,
如下图所示,曲线为一族平行于直线的直线,

当直线过点时,利用
舍去,则
当直线过点两点时,,  
∴由图可知,当时,曲线与曲线有两个公共点.
点评:解决该试题的关键是利用极坐标和直角坐标的互化,以及线与圆位置关系的知识来判定,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知椭圆()过点,其左、右焦点分别为,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与抛物线相交于两点,F为抛物线的焦点,若,则k的值为(   )。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的两焦点之间的距离为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线 y2 =" 4x" 的焦点作直线交抛物线于A(x1, y1)B(x2, y2)两点,如果=6,那么           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,椭圆C方程为 (),点为椭圆C的左、右顶点。

(1)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆的标准方程;
(2)若直线与(1)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足,求证:直线过定点,并求出该点的坐标。 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆长轴的一个顶点作圆的两条切线,切点分别为,若 (是坐标原点),则椭圆的离心率为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设已知椭圆=1(a>b>0)的一个焦点是圆x2+y2-6x+8=0的圆心,且短轴长为8,则椭圆的左顶点为(   )
A.(-3,0)B.(-4,0)C.(-10,0)D.(-5,0)

查看答案和解析>>

同步练习册答案