精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-x2,x∈R.
(Ⅰ)若正数m、n满足m•n>1,证明:f(m)、f(n)至少有一个不小于零;
(Ⅱ)若a、b为不相等的正数,且满足f(a)=f(b),求证:a+b>1.

证明:(Ⅰ)假设f(m)、f(n)都不小于零,∴f(m)=m3-m<0,f(n)=n3-n<0,
∴m2(m-1)<0,∴0<m<1,同理0<n<1,∴0<mn<1,这与mn>1矛盾,
∴f(m)、f(n)至少有一个不小于零.
(Ⅱ)∵f(a)=a3-a=b3-b,∴a3-b3=a2-b2,∴(a-b)(a2+ab+b2)=(a-b)(a+b),
∴a2+ab+b2=a+b,∴(a+b)2-3ab=a+b,∴(a+b)2-(a+b)=3ab>0,
∴(a+b)2-(a+b)>0,解得 a+b<0或a+b>1,∵a、b为不相等的正数,∴a+b>1.
分析:(Ⅰ)证明:假设f(m)、f(n)都不小于零,可证得0<m<1,0<n<1,故有 0<mn<1,这与mn>1矛盾.
(Ⅱ) 由f(a)=f(b),可得∴(a+b)2-(a+b)=3ab>0,由(a+b)2-(a+b)>0,解得 a+b<0或a+b>1,根据a、b为不相等的正数,可得a+b>1.
点评:本题考查用反证法和放缩法证明数学命题,一元二次不等式的解法,得到∴(a+b)2-(a+b)=3ab>0,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案