精英家教网 > 高中数学 > 题目详情
18.如图所示的几何体中,四边形ABCD为梯形,AD∥BC,AB⊥底面BEC,EC⊥CB,已知BC=2,AD=AB=EC=1.
(Ⅰ)证明:BD⊥面DEC;
(Ⅱ)求AE与平面CDE所成角的正弦值.

分析 (I)以C为原点建立空间直角坐标系,求出$\overrightarrow{BD}$,$\overrightarrow{CE}$,$\overrightarrow{CD}$的坐标,利用向量的数量积为零证明BD⊥CE,BD⊥CD,故而得出BD⊥平面CDE;
(II)由(I)知$\overrightarrow{BD}$为平面CDE的一个法向量,则AE与平面CDE所成角的正弦值等于|cos<$\overrightarrow{BD}$,$\overrightarrow{AE}$>|.

解答 (Ⅰ)证明:过C作AB的平行线CZ,则CZ⊥平面BCE,
∵BC⊥EC,CB,CE,CZ两两垂直,
以C为坐标原点建立空间直角坐标系C-xyz,如图所示:
∵BC=2,AD=AB=EC=1.
∴B(2,0,0),C(0,0,0),D(1,0,1),E(0,1,0).
∴$\overrightarrow{BD}$=(-1,0,1),$\overrightarrow{CD}$=(1,0,1),$\overrightarrow{CE}$=(0,1,0).
∴$\overrightarrow{BD}•\overrightarrow{CD}$=0,$\overrightarrow{BD}$$•\overrightarrow{CE}$=0.
∴BD⊥CD,BD⊥CE,又CD?平面CDE,CE?平面CDE,CD∩CE=C,
∴BD⊥面DEC.
(Ⅱ)∵BD⊥平面CDE,∴$\overrightarrow{BD}$为平面CDE的一个法向量.
∵A(2,0,1),∴$\overrightarrow{AE}$=(-2,1,-1),
∴$\overrightarrow{AE}•\overrightarrow{BD}$=1,|$\overrightarrow{AE}$|=$\sqrt{6}$,|$\overrightarrow{BD}$|=$\sqrt{2}$,
∴cos<$\overrightarrow{AE},\overrightarrow{BD}$>=$\frac{\overrightarrow{AE}•\overrightarrow{BD}}{|\overrightarrow{AE}||\overrightarrow{BD}|}$=$\frac{1}{\sqrt{6}×\sqrt{2}}$=$\frac{\sqrt{3}}{6}$.
∴AE与平面CDE所成角的正弦值为$\frac{\sqrt{3}}{6}$.

点评 本题考查了线面垂直的判定,线面角的计算,多采用向量法来解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC的体积为$\frac{4}{3}$,其外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.球的半径扩大为原来的2倍,则其表面积扩大为原来的(  )
A.2倍B.4倍C.6倍D.8倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=$\frac{1}{2}$BD,平面EFBD⊥平面ABCD.
(Ⅰ)证明:AC⊥平面EFBD;
(Ⅱ)若BF=$\frac{\sqrt{10}}{2}$,求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在四棱锥P-ABCD中,AB∥CD,AB⊥AD,PA=AB=2CD=4,$PB=2AD=4\sqrt{2}$,平面PAB⊥平面ABCD.
(1)求证:BD⊥平面PAC;
(2)求二面角A-PC-D的余弦值;
(3)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正弦值为$\frac{{\sqrt{3}}}{3}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某种产品的广告费用支出与销售额之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图,并说明销售额y与广告费用支出x之间是正相关还是负相关?
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y=bx+a$,$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}{y_i})-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},a=\overline y-\hat b\overline x$,求出回归直线方程.
(3)据此估计广告费用为10时,销售收入y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图的程序框图,若输入a,b,k分别为1,2,3,则输出的M=(  )
A.$\frac{2}{3}$B.$\frac{16}{5}$C.$\frac{7}{2}$D.$\frac{15}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,PA=PD,M为CD的中点,BD⊥PM.
(1)求证:平面PAD⊥平面ABCD;
(2)若∠APD=60°,求直线AB与平面PBM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期
温差
12月1日12月2日12月3日12月4日12月5日
x(℃)101113128
发芽数y(颗)2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性方程是可靠地,试问(2)中所得到的线性方程是否可靠?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案