精英家教网 > 高中数学 > 题目详情
6.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=$\frac{1}{2}$BD,平面EFBD⊥平面ABCD.
(Ⅰ)证明:AC⊥平面EFBD;
(Ⅱ)若BF=$\frac{\sqrt{10}}{2}$,求多面体ABCDEF的体积.

分析 (I)由正方形的性质得AC⊥BD,由面面垂直的性质即可得到AC⊥平面EFBD;
(II)求出等腰梯形的上下底,利用勾股定理求出梯形的高,将多面体分解成四棱锥A-BDEF和四棱锥C-BDEF计算体积.

解答 证明:(Ⅰ)∵四边形ABCD为正方形,
∴AC⊥BD.
又平面EFBD⊥平面ABCD,平面EFBD∩平面ABCD=BD,AC?平面ABCD,
∴AC⊥平面EFBD.
(Ⅱ)∵正方形ABCD的边长为2,∴BD=AC=2$\sqrt{2}$,
∴EF=$\frac{1}{2}BD=\sqrt{2}$,
过F作FM⊥BD于M,
∵四边形EFBD为等腰梯形,∴MB=$\frac{1}{2}$(BD-EF)=$\frac{\sqrt{2}}{2}$.
∴FM=$\sqrt{F{B}^{2}-M{B}^{2}}$=$\sqrt{2}$.
设AC∩BD=O,则AO=$\frac{1}{2}AC=\sqrt{2}$.
∴VC-BDEF=VA-BDEF=$\frac{1}{3}$S梯形BDEF•AO=$\frac{1}{3}×\frac{1}{2}×(\sqrt{2}+2\sqrt{2})×\sqrt{2}×\sqrt{2}$=$\sqrt{2}$.
∴多面体ABCDEF的体积V=2VA-BDEF=2$\sqrt{2}$.

点评 本题考查了面面垂直的性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.等比数列中,a1+a2+a3=18,a2+a3+a4=-9,求该数列的a1,a5,与前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知某一起的使用年限x(年)和其维修费用y(万元)的统计数据;
使用年限x12345
维修费用y1.32.54.05.66.6
由散点图知y对x具有线性相关关系,利用线性回归方程估计使用年限为10年时,维修费用为(  )万元.
A.12.86B.13.38C.13.59D.15.02

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.由矩形ABCD与梯形AFEB构成平面多边形(如图1),O为AB中点,且AB∥EF,AB=2EF,现将平面多边形沿AB折起,使矩形ABCD与梯形AFEB所在平面所成二面角为直二面角(如图2).
(1)若点P为CF的中点,求证:OP∥平面DAF;
(2)过点C,B,F的平面将多面体EFADCB分割成两部分,求两部分体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三人参加一个掷硬币的游戏,每一局三人各掷硬币一次;当有一人掷得的结果与其他二人不同时,此人就出局且游戏终止;否则就进入下一局,并且按相同的规则继续进行游戏;规定进行第十局时,无论结果如何都终止游戏.已知每次掷硬币中正面向上与反面向上的概率都是$\frac{1}{2}$,则下列结论中
①第一局甲就出局的概率是$\frac{1}{3}$;②第一局有人出局的概率是$\frac{1}{2}$;
③第三局才有人出局的概率是$\frac{3}{64}$;④若直到第九局才有人出局,则甲出局的概率是$\frac{1}{3}$;
⑤该游戏在终止前,至少玩了六局的概率大于$\frac{1}{1000}$.
正确的是(  )
A.①②B.②④⑤C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.执行如图所示的程序框图,则输出的i=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示的几何体中,四边形ABCD为梯形,AD∥BC,AB⊥底面BEC,EC⊥CB,已知BC=2,AD=AB=EC=1.
(Ⅰ)证明:BD⊥面DEC;
(Ⅱ)求AE与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(sinx+cosx)2+cos2x
(1)将f(x)化简成f(x)=Asin(ωx+φ)+k的形式,并求f(x)最小正周期;
(2)求f(x)在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC的体积为$\frac{4}{3}$,其外接球的表面积为12π.

查看答案和解析>>

同步练习册答案