精英家教网 > 高中数学 > 题目详情
12.等比数列中,a1+a2+a3=18,a2+a3+a4=-9,求该数列的a1,a5,与前5项和S5

分析 设等比数列的公比为q,求出q和a1,即可求出a5,与前5项和S5

解答 解:设等比数列的公比为q.
由a1+a2+a3=18,
得a2+a3+a4=q(a1+a2+a3)=18q=-9⇒q=-$\frac{1}{2}$,
∴a1+a1q+a1q2=18,
解得a1=24,
∴a5=a1q4=24×$\frac{1}{16}$=$\frac{3}{2}$,
∴S5=$\frac{24(1-(-\frac{1}{2})^{5})}{1+\frac{1}{2}}$=$\frac{33}{2}$

点评 本题考查等比数列的性质以及等比数列的前n项和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.随机变量ξ的概率分布由如表给出:
x 7 8 9 10
 P(ξ=x) 0.3 0.35 0.20.1
则该随机变量ξ的均值是7.7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对任意两个非零的平面向量$\overrightarrow{α}$和$\overrightarrow{β}$,定义运算$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{\overrightarrow{α}•\overrightarrow{β}}{\overrightarrow{β}•\overrightarrow{β}}$,现有如下四个命题:
①$\overrightarrow{α}$?$\overrightarrow{β}$=$\overrightarrow{β}$?$\overrightarrow{α}$;
②$\overrightarrow{α}$=(1,2),$\overrightarrow{β}$=(1,1),则$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$;
③若0<|$\overrightarrow{α}$|<|$\overrightarrow{β}$|,$\overrightarrow{α}$与$\overrightarrow{β}$的夹角θ∈[$\frac{π}{4}$,$\frac{π}{2}$),则$\overrightarrow{α}$?$\overrightarrow{β}$∈(0,$\frac{\sqrt{2}}{2}$];
④若|$\overrightarrow{α}$|≥|$\overrightarrow{β}$|>0,$\overrightarrow{α}$与$\overrightarrow{β}$的夹角θ∈(0,$\frac{π}{4}$),且$\overrightarrow{α}$?$\overrightarrow{β}$和$\overrightarrow{β}$?$\overrightarrow{α}$都在集合{$\frac{n}{2}$|n∈Z}上,则$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$.
其中正确命题的序号是②④(把所有正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在△ABC中,∠B=60°,a=3,b=$\sqrt{19}$.
(1)求c的大小;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求满足条件5x2+5y2+8xy+2y-2x+2=0的实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=$\frac{3}{2}$,连接CE并延长交AD于F.
(Ⅰ)求证:AD⊥平面CFG;
(Ⅱ)求三棱锥VP-ACG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC的体积为$\frac{4}{3}$,其外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若长方体的一个顶点上三条棱长分别是1、1、2,且它的八个顶点都在同一球面上,则这个球的体积是(  )
A.B.$\sqrt{6}π$C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,多面体ABCDEF中,四边形ABCD是边长为2的正方形,四边形EFBD为等腰梯形,EF∥BD,EF=$\frac{1}{2}$BD,平面EFBD⊥平面ABCD.
(Ⅰ)证明:AC⊥平面EFBD;
(Ⅱ)若BF=$\frac{\sqrt{10}}{2}$,求多面体ABCDEF的体积.

查看答案和解析>>

同步练习册答案