精英家教网 > 高中数学 > 题目详情
7.求满足条件5x2+5y2+8xy+2y-2x+2=0的实数x,y的值.

分析 利用方程化为完全平方式的和,得到方程组,求解即可.

解答 解:5x2+5y2+8xy+2y-2x+2=0,可得:4(x+y)2+(x-1)2+(y+1)2=0.
可得:$\left\{\begin{array}{l}{x=-y}\\{x-1=0}\\{y+1=0}\end{array}\right.$,解得x=1,y=-1.

点评 本题考查曲线与方程的关系,恒成立问题的应用,考查计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某商场2015年一月份到十二月份月销售额呈现先下降后上升的趋势,下列四个函数中,能较准确反映商场月销售额f(x)与月份x关系且满足f(1)=8,f(3)=2的函数为(  )
A.f(x)=20×($\frac{1}{2}$)xB.f(x)=-6log3x+8C.f(x)=x2-12x+19D.f(x)=x2-7x+14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}的前n项和为Sn,a1=1,S2•S3=36,且对任意n∈N*都有an+1>an,则S5=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知α∩β=a,b?β且b∩a=A,c?α且c∥a,则b与c的位置关系(  )
A.相交且垂直B.平行直线C.异面直线D.相交不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$\overrightarrow{a}$为非零向量,$\overrightarrow{b}$=(3,4),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求$\overrightarrow{a}$的单位向量$\overrightarrow{{a}_{0}}$=($\frac{4}{5}$,-$\frac{3}{5}$)或(-$\frac{4}{5}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等比数列中,a1+a2+a3=18,a2+a3+a4=-9,求该数列的a1,a5,与前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overrightarrow x$$\overrightarrow y$$\overrightarrow w$ $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)2$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)2$\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)(y-$\overrightarrow y$)$\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)(y-$\overrightarrow y$)
46.656.36.8289.81.61469108.8
表中${w_i}=\sqrt{x_i}$,$\overrightarrow w$=$\frac{1}{8}$$\sum_{i=1}^8{w_i}$
(Ⅰ)根据散点图判断,y=a+bx与y=c+d$\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答
当年宣传费x=49时,年销售量及年利润的预报值是多少?
附:对于一组数据(u1 v1),(u2 v2)…..(un vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:$\widehatβ=\frac{{\sum_{i=1}^n{({u_i}-\overline u)({v_i}-\overline v)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}},\widehatα=\overline v-\widehatβ\overline u$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四边形ABCD是边长为2的菱形,∠ABC=60°,PA⊥平面ABCD,
E为PC中点.
(Ⅰ)求证:平面BED⊥平面ABCD;
(Ⅱ)若∠BED=90°,求三棱锥E-BDP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三人参加一个掷硬币的游戏,每一局三人各掷硬币一次;当有一人掷得的结果与其他二人不同时,此人就出局且游戏终止;否则就进入下一局,并且按相同的规则继续进行游戏;规定进行第十局时,无论结果如何都终止游戏.已知每次掷硬币中正面向上与反面向上的概率都是$\frac{1}{2}$,则下列结论中
①第一局甲就出局的概率是$\frac{1}{3}$;②第一局有人出局的概率是$\frac{1}{2}$;
③第三局才有人出局的概率是$\frac{3}{64}$;④若直到第九局才有人出局,则甲出局的概率是$\frac{1}{3}$;
⑤该游戏在终止前,至少玩了六局的概率大于$\frac{1}{1000}$.
正确的是(  )
A.①②B.②④⑤C.D.

查看答案和解析>>

同步练习册答案