【题目】已知动点P是△PMN的顶点,M(﹣2,0),N(2,0),直线PM,PN的斜率之积为﹣
.
(1)求点P的轨迹E的方程;
(2)设四边形ABCD的顶点都在曲线E上,且AB∥CD,直线AB,CD分别过点(﹣1,0),(1,0),求四边形ABCD的面积为
时,直线AB的方程.
【答案】(1)
(x≠±2);(2)x±y+1=0.
【解析】
(1)设点P(x,y),直接把已知条件用坐标表示并化简即可;
(2)设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),由直线与椭圆相交弦长公式(应用韦达定理计算)求出弦长,交求出原点到直线
距离,表示出
面积,由对称性知四边形ABCD的面积是
面积的4倍,从而可以求出
.
解:(1)设点P(x,y),
∵直线PM与PN的斜率之积为﹣
,
即
=
=﹣
,
化简得
(x≠±2),
∴动点P的轨迹E的方程为
(x≠±2);
(2)设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),
由![]()
得(3m2+4)y2﹣6my﹣9=0,
则
, y1+y2=
,
,
|y1﹣y2|=
=
,
∴|AB|=
=
,
又原点O到直线AB的距离d=
,
∴S△ABO=
×
=
,
由图形的对称性可知,SABCD=4S△ABO,
∴SABCD=
=
,
化简得18m4﹣m2﹣17=0,
解得m2=1,即m=±1,
∴直线AB的方程为x=±y﹣1,即x±y+1=0.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为![]()
=
(
>0),过点
的直线
的参数方程为
(t为参数),直线
与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线
的普通方程;
(Ⅱ)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数,
),以坐标原点
为极点,以
轴正半轴为极轴的极坐标系中,曲线
上一点
的极坐标为
,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程;
(2)设点
在
上,点
在
上(异于极点),若
四点依次在同一条直线
上,且
成等比数列,求
的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且(2b﹣c)cosA=acosC.
(1)求A;
(2)若△ABC的面积为
,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
![]()
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占![]()
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com