分析 根据椭圆的方程求出焦点坐标,得出双曲线C的焦点在x轴上和c的值,再根据渐近线方程,求出a、b的值,即可得出双曲线C的标准方程.
解答 解:椭圆3x2+8y2=24的标准方程是$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{3}$=1,
焦点坐标为(-$\sqrt{5}$,0)和($\sqrt{5}$,0);
所以双曲线C的焦点在x轴上,且c=$\sqrt{5}$,
又渐近线方程为y=±2x,∴$\frac{b}{a}$=2,
又c2=a2+b2,
解得a=1,b=2;
所以双曲线C的标准方程为x2-$\frac{{y}^{2}}{4}$=1.
故答案为:x2-$\frac{{y}^{2}}{4}$=1.
点评 本题考查了椭圆与双曲线的简单几何性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | 510 | B. | -511 | C. | 512 | D. | -512 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$x-y=0 | B. | 2x-y=0 | C. | x+2y-10=0 | D. | x-2y-8=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0) | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 0.1% | B. | 1% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 如果m?α,n?α,m、n是异面直线,那么n∥α | |
| B. | 如果m?α,n?α,m、n是异面直线,那么n与α相交 | |
| C. | 如果m?α,n∥α,m、n共面,那么m∥n | |
| D. | 如果m?α,n∥m,那么n∥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com