精英家教网 > 高中数学 > 题目详情
若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为
 
考点:圆的标准方程
专题:直线与圆
分析:利用点(a,b)关于直线y=x±k的对称点为 (b,a),求出圆心,再根据半径求得圆的方程.
解答: 解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,
可得所求的圆的方程为x2+(y-1)2=1,
故答案为:x2+(y-1)2=1.
点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为 (b,a),属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).
(1)证明:动点D在定直线上;
(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2,证明:|MN2|2-|MN1|2为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为
2
3
3
5
.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,内角A,B,C的对边分别为a,b,c,2
3
sin2
A+B
2
=sinC+
3
+1.
(1)求角C的大小;
(2)若a=2
3
,c=2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
=(1,2),
b
=(4,2),
c
=m
a
+
b
(m∈R),且
c
a
的夹角等于
c
b
的夹角,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b-c=
1
4
a,2sinB=3sinC,则cosA的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且
S1
S2
=
9
4
,则
V1
V2
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C的两个焦点为(-
2
,0),(
2
,0),一个顶点是(1,0),则C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=(  )
A、{x|x≥0}
B、{x|x≤1}
C、{x|0≤x≤1}
D、{x|0<x<1}

查看答案和解析>>

同步练习册答案