精英家教网 > 高中数学 > 题目详情
15.已知 函数f(x)=logax(a>0且a≠1),g(x)=-(x-$\frac{5}{12}$)2
(1)若a=3,f($\frac{27}{x}$)f(3x)=-5,求x的值;
(2)若f(3a-1)>f(a),求g(a)的取值范围.

分析 (1))由题意得(${log}_{3}^{27}$-${log}_{3}^{x}$)(${log}_{3}^{3}$+${log}_{3}^{x}$)=-5,设t=${log}_{3}^{x}$,即(3-t)(1+t)=-5,解出即可;
(2)求出a的范围,根据g(x)的最大值是0,求出g(a)的范围即可.

解答 解:(1)由题意得:(${log}_{a}^{27}$-${log}_{a}^{x}$)(${log}_{a}^{3}$+${log}_{a}^{x}$)=(${log}_{3}^{27}$-${log}_{3}^{x}$)(${log}_{3}^{3}$+${log}_{3}^{x}$)=-5,
设t=${log}_{3}^{x}$,即(3-t)(1+t)=-5,
∴t2-2t-8=0,解得:t=4或-2,
∴${log}_{3}^{x}$=4或${log}_{3}^{x}$=-2,
解得:x=81或x=$\frac{1}{9}$;
(2)当a>1,3a-1>a>0,∴a>$\frac{1}{2}$,
又a>1,∴a>1,
当0<a<1,0<3a-1<a,
∴$\frac{1}{3}$<a<$\frac{1}{2}$,
综上,a∈($\frac{1}{3}$,$\frac{1}{2}$)∪(1,+∞),
∴a=$\frac{5}{12}$时,g(x)max=0,又g($\frac{1}{2}$)=g($\frac{1}{3}$)=-$\frac{1}{144}$,g(1)=-$\frac{49}{144}$,
∴g(a)∈(-∞,-$\frac{49}{144}$)∪(-$\frac{1}{144}$,0].

点评 本题考查了对数函数的性质,考查二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知直线l的方程为y=x+4,圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数),以原点为极点,x轴正半轴为极轴.建立极坐标系.
(Ⅰ)求直线l与圆C的交点的极坐标;
(Ⅱ)若P为圆C上的动点.求P到直线l的距离d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=-x2+2x+a(0≤x≤3,a≠0)的最大值为m,最小值为n.
(1)求m,n的值(用a表示);
(2)若角θ的终边经过点P(m-1,n+3),求$\frac{{2sin(θ-π)+sin(\frac{3π}{2}+θ)}}{{cos(-θ)+cos(\frac{5π}{2}-θ)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}(x+1),x∈[0,2]}\\{1-|x-4|,x∈[2,+∞)}\end{array}\right.$,则关于x的函数F(x)=f(x)-a(0<a<1)的所有零点之和为1-3a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A是曲线ρ=4cosφ上任意一点,求点A到直线$ρcos(θ-\frac{π}{3})=4$距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列不定积分:
(1)∫$\frac{x+3}{{x}^{2}-5x+6}$dx;
(2)∫$\frac{2x+1}{{x}^{3}-2{x}^{2}+x}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知样本x1,x2,…xm的平均数为$\overline x$,样本y1,y2,…yn的平均数$\overline y$,若样本x1,x2,…xm,y1,y2,…yn的平均数$\overline z$=α$\overline x$+(1-α)$\overline y$,其中0<α≤$\frac{1}{2}$,则m,n的大小关系为(  )
A.m<nB.m>nC.m≤nD.m≥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且椭圆与y轴的一个交点坐标为(0,$\sqrt{2}$).
(Ⅰ)求椭圆M的方程;
(Ⅱ)若直线y=$\frac{\sqrt{2}}{2}$(x-m)交椭圆与A,B两点,椭圆上一点C($\sqrt{2}$,1),求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若方程(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦点在y轴上的椭圆,则实数m的取值范围是(  )
A.(-∞,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

同步练习册答案