已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )
A.?xα∈R,f(xα)=0
B.函数y=f(x)的图象是中心对称图形
C.若xα是f(x)的极小值点,则f(x)在区间(-∞,xα)单调递减
D.若xα是f(x)的极值点,则f′(xα)=0
【答案】
分析:利用导数的运算法则得出f
′(x),分△>0与△≤0讨论,列出表格,即可得出.
解答:解:f
′(x)=3x
2+2ax+b.
(1)当△=4a
2-12b>0时,f
′(x)=0有两解,不妨设为x
1<x
2,列表如下
| x | (-∞,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
| f'(x) | + | | - | | + |
| f(x) | 单调递增 | 极大值 | 单调递减 | 极小值 | 单调递增 |
由表格可知:
①x
2是函数f(x)的极小值点,但是f(x)在区间(-∞,x
2)不具有单调性,故C不正确.
②∵

+f(x)=

+x
3+ax
2+bx+c=

,

=

,
∵

+f(x)=

,
∴点P

为对称中心,故B正确.
③由表格可知x
1,x
2分别为极值点,则

,D正确.
④∵x→-∞时,f(x)→-∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即?x
α∈R,f(x
α)=0,故A正确.
(2)当△≤0时,

,故f(x)在R上单调递增,①此时不存在极值点,故D正确,C不正确;
②B同(1)中②正确;
③∵x→-∞时,f(x)→-∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即?x
α∈R,f(x
α)=0,故A正确.
综上可知:错误的结论是C.
故选C.
点评:熟练掌握导数的运算法则、中心得出的定义、单调性与极值的关系等基础知识与方法,考查了分类讨论的思想方法等基本方法.