精英家教网 > 高中数学 > 题目详情
一个圆柱形容器的底部直径是cm,高是cm.现在以cm/s的速度向容器内注入某种溶液.求容器内溶液的高度cm与注入溶液的时间s之间的函数解析式,并写出函数的定义域和值域.
;值域是,定义域为
依题意得,所以.据题意可知函数的值域是,所以函数的定义域为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数:
(Ⅰ)证明:f(x)+2+f(2a-x)=0对定义域内的所有x都成立.
(Ⅱ)当f(x)的定义域为[a+,a+1]时,求证:f(x)的值域为[-3,-2];
(Ⅲ)设函数g(x)=x2+|(x-a)f(x)| ,求g(x) 的最小值 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为数列的前项和,且,(Ⅰ)求证:数列为等比数列;(Ⅱ)设,求数列的前项和;(Ⅲ)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题




(1)计算:
(2)证明:是定值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案;在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过万元,同时奖金不超过利润的.现有三个奖励模型:.其中哪个模型能符合公司的要求?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题





(1)企业要成为不亏损企业,每月至少生产多少台电机?
(2)当月总产值为多少时,企业亏损量严重,最大亏损额为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

⑴已知,求的取值范围. ⑵已知,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程的解所在区间一定是:
A.B.
C.D.

查看答案和解析>>

同步练习册答案