精英家教网 > 高中数学 > 题目详情
3.函数y=log32x的反函数是y=$\frac{1}{2}{•3}^{x}$,x∈R.

分析 由y=log32x解得2x=3y,把x与y互换,即可得出.

解答 解:由y=log32x解得2x=3y,把x与y互换,可得:y=$\frac{1}{2}{•3}^{x}$.
∴函数y=log32x的反函数是y=$\frac{1}{2}{•3}^{x}$,x∈R.
故答案为:y=$\frac{1}{2}{•3}^{x}$,x∈R.

点评 本题考查了指数式与对数式互化、反函数的求法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.近期雾霾天气多发,对城市环境造成很大影响,某城市环保部门加强了对空气质量的监测.按国家环保部发布的(环境空气质量标准)规定,居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度的监测数据,数据记录如图1茎叶图
(1)完成如下的频率分布表,并在所给的坐标系(图2)中画出(0,100)的频率分布直方图;
(2)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率.
组别PM2.5浓度(微克/立方米)频数(天)频率
第一组(0,25]
第二组(25,50]
第三组(50,75]
第四组(75,100]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=-x2+x+lnx+a的图象总是在直线y=1的下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{(a-\frac{1}{3})x+3,x≤0}\\{{a}^{x},x>0}\end{array}\right.$在区间(-∞,+∞)内是减函数,则a的取值范围是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设△ABC中的内角A,B,C所对的边长分别为a,b,c,且asinB=2sin$\frac{A}{2}$,cos$\frac{A}{2}$=$\frac{2}{3}$,则b等于(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设与直线x-y-1=0相切的圆,经过点(2,-1),且圆心在直线2x+y=0上,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x2+4x,则f(2cosθ-1)的值域是(  )
A.[-4,+∞)B.(-∞,-3]C.[-4,5]D.[-3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=${log}_{\frac{1}{2}}$($\frac{1}{2}$sin2x).
(1)求f(x)的定义域、值域和单调区间
(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A、B、C为△ABC的三个内角,向量$\overrightarrow{m}$满足|$\overrightarrow{m}$|=$\frac{\sqrt{6}}{2}$,且$\overrightarrow{m}$=($\sqrt{2}$sin$\frac{B+C}{2}$,cos$\frac{B-C}{2}$),若A最大时,动点P使得|$\overrightarrow{PB}$|、|$\overrightarrow{BC}$|、|$\overrightarrow{PC}$|成等差数列,则$\frac{|\overrightarrow{PA}|}{|\overrightarrow{BC}|}$的最大值是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

同步练习册答案