精英家教网 > 高中数学 > 题目详情
8.四棱锥P-ABCD底面为梯形,AB∥DC,DC=3AB,若$\overrightarrow{PE}$=λ$\overrightarrow{ED}$(λ>0),AE∥平面PBC,则λ=$\frac{1}{2}$.

分析 过E作EF∥CD交PC于F,连结BF,AE.则EF∥AB,由线面平行的性质得AE∥BF,故而四边形ABFE是平行四边形,AB=EF,利用平行线等分线段成比例定理列比例式得出λ.

解答 解:过E作EF∥CD交PC于F,连结BF,AE.
∵AB∥CD,∴EF∥AB.
∵AE∥平面PBC,AE?平面ABFE,平面PAB∩平面ABFE=BF,
∴AE∥BF.
∴四边形ABFE是平行四边形,
∴AB=EF.
∵$\overrightarrow{PE}$=λ$\overrightarrow{ED}$,∴$\frac{PE}{PD}=\frac{λ}{λ+1}$,
∵EF∥CD,∴$\frac{PE}{PD}=\frac{EF}{CD}=\frac{AB}{CD}=\frac{1}{3}$,即$\frac{λ}{λ+1}$=$\frac{1}{3}$,解得$λ=\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了线面平行的性质,向量数乘运算的意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y≥0\\ 2x-y≥0\\ x-3≤0\end{array}\right.$,则不等式组表示的平面区域面积是$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设直线l是曲线y=4x3+3lnx的切线,则直线l的斜率的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.利用计算机在区间(0,1)上产生随机数a,则使不等式9a2-9a+2<0成立的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)的定义域为A.若函数f(x)满足:(ⅰ)A={x|x≠2k-1,k∈Z};(ⅱ)函数f(x)是奇函数;(ⅲ)对任意x∈A,有f(x+1)=-$\frac{1}{f(x)}$.则下面关于函数f(x)的叙述中错误的是(  )
A.函数f(x)是周期函数,且最小正周期是2
B.函数f(x)的图象关于点(1,0)中心对称
C.函数f(x)在区间(0,1)上是增函数
D.函数f(x)的零点是x=2k(其中k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\frac{{x}^{2}}{ax-2}$,且f(b)=b,f(-b)<-$\frac{1}{b}$,a∈N+,b∈N+,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x=$\frac{1}{2}$(2005${\;}^{\frac{1}{n}}$-2005${\;}^{-\frac{1}{n}}$)(其中n为正整数),那么(x-$\sqrt{1+{x}^{2}}$)n=-$\frac{1}{2005}$或$\frac{1}{2005}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若集合P={x|x2+x-6=0},S={x|ax+1=0},若S∩P=S,则由a的可能取值组成的集合为{0,$\frac{1}{3}$,-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知p:x2+2x-3>0,q:x>a,且¬q的一个充分不必要条件是¬p,则a的取值范围是a≥1.

查看答案和解析>>

同步练习册答案