精英家教网 > 高中数学 > 题目详情
18.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y≥0\\ 2x-y≥0\\ x-3≤0\end{array}\right.$,则不等式组表示的平面区域面积是$\frac{15}{2}$.

分析 作出不等式组对应的平面区域求出交点的坐标,利用三角形的面积公式进行求解即可.

解答 解:可行域如图所示的阴影部分,直线OA与直线OB垂直,且A(1,2),B(6,-3),
所以$|{OA}|=\sqrt{5},|{OB}|=3\sqrt{5}$,
故${S_{△OAB}}=\frac{1}{2}×\sqrt{5}×3\sqrt{5}=\frac{15}{2}$.

故答案为:$\frac{15}{2}$.

点评 本题主要考查三角形面积的计算,根据二元一次不等式组表示平面区域,作出对应的图象是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解方程x2-3|x|+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C1:$\frac{y^2}{m+3}$-$\frac{x^2}{m}$=1(m>0)与双曲线C2:$\frac{x^2}{4}$-$\frac{y^2}{16}$=1有相同的渐近线,则两个双曲线的四个焦点构成的四边形面积为(  )
A.10B.20C.10$\sqrt{5}$D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f′(x),y=g′(x)的导函数的图象如右图所示,那么y=f(x),y=g(x)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=$\sqrt{3}$sinx+cosx在x∈R上的最小值等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$+$\overrightarrow{2b}$)∥$\overrightarrow{c}$,则k=(  )
A.-8B.2C.-$\frac{1}{2}$D.-$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了促进人口的均衡发展,我国从2016年1月1日起,全国统一实施全面放开二孩政策.为了解适龄民众对放开生育二孩政策的态度,某部门选取70后和80后年龄段的人作为调查对象,进行了问卷调查.其中,持“支持生二孩”“不支持生二孩”和“保留意见”态度的人数如下表所示:
支持生二孩不支持生二孩保留意见
80后380200420
70后120300180
(1)根据统计表计算并说明,能否有99.9%的把握认为“支持生二孩”与“不支持生二孩”与年龄段有关?
(2)在统计表中持“不支持生二孩”态度的人中,用分层抽样的方法抽取5人,并将其看成一个总体,从这5人中任意选取2人,求至少有1个80后的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.四棱锥P-ABCD底面为梯形,AB∥DC,DC=3AB,若$\overrightarrow{PE}$=λ$\overrightarrow{ED}$(λ>0),AE∥平面PBC,则λ=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案