精英家教网 > 高中数学 > 题目详情
8.若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为-1.

分析 由恒成立转化为最值问题,由此得到二次函数不等式,结合图象得到x的取值范围.

解答 解:∵对任意正实数a,不等式x2≤1+a恒成立,
∴等价于a≥x2-1,
∴a≥(x2-1)max
0≥(x2-1)max
-1≤x≤1
∴实数x的最小值为-1.

点评 本题考查恒成立转化为最值问题,二次函数不等式,数形结合,像得到x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数f(x)=x3+$\frac{3}{x}$在(0,+∞)上的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于y=3sin(2x-$\frac{π}{4}$)有以下命题:
①f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z);
②函数的解析式可化为y=3cos(2x-$\frac{π}{4}$);
③图象关于x=-$\frac{π}{8}$对称;④图象关于点(-$\frac{π}{8}$,0)对称.
其中正确的是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求(1+x)3+(1+x)4+(1+x)5+…+(1+x)20的展开式中x3的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.数列{an}中,若ai=k2(2k≤i<2k+1,i∈N*,k∈N),则满足ai+a2i≥100的i的最小值为128.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若A,B是锐角三角形ABC的两个内角,则以下选项中正确的是(  )
A.sinA<sinBB.sinA<cosBC.tanAtanB>1D.tanAtanB<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=ax2+bx+c(a>0),
(Ⅰ)当a=1,b=2,若|f(x)|-2=0有且只有两个不同的实根,求实数c的取值范围;
(Ⅱ)设方程f(x)=x的两个实根为x1,x2,且满足0<t<x1,x2-x1>$\frac{1}{a}$,试判断f(t)与x1的大小,并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果二次函数的图象经过原点和点(-4,0),则该二次函数图象的对称轴方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y≥0\\ 2x-y≥0\\ x-3≤0\end{array}\right.$,则不等式组表示的平面区域面积是$\frac{15}{2}$.

查看答案和解析>>

同步练习册答案