精英家教网 > 高中数学 > 题目详情
20.已知f(x)=ax2+bx+c(a>0),
(Ⅰ)当a=1,b=2,若|f(x)|-2=0有且只有两个不同的实根,求实数c的取值范围;
(Ⅱ)设方程f(x)=x的两个实根为x1,x2,且满足0<t<x1,x2-x1>$\frac{1}{a}$,试判断f(t)与x1的大小,并给出理由.

分析 (Ⅰ)由f(x)的解析式得到最小值c-1,由|f(x)|-2=0有且只有两个不同的实根,得到不等式-2<c-1<2,由此得到c的取值范围.
(Ⅱ)由方程f(x)=x的两个实根为x1,x2,由韦达定理得到两个根的差的范围,用做差来判断两数的大小.

解答 解:(1)∵当a=1,b=2,∴f(x)=x2+2x+c=(x+1)2+c-1
∴-2<c-1<2
∴-1<c<3
(Ⅱ)方程f(x)=x,即ax2+(b-1)x+c=0,
由题意得${x_1}+{x_2}=\frac{1-b}{a},{x_1}{x_2}=\frac{c}{a}$,
$f(t)-{x_1}=a{t^2}+bt+c-(a{x_1}^2+b{x_1}+c)=(t-{x_1})(at+a{x_1}+b)$(1)
∵${x_1}+{x_2}=\frac{1-b}{a}$,
∴ax1+ax2=1-b,即ax1+b=1-ax2代入 (1)得
$f(t)-{x_1}=a{t^2}-bt+c-(a{x_1}^2-b{x_1}+c)=(t-{x_1})(at-a{x_2}+1)$
∵0<t<x1,∴t-x1<0,∵0<t<x1
∴at-ax2+1<ax1-ax2+1,
∵${x_2}-{x_1}>\frac{1}{a}$,∴ax1-ax2<-1,即at-ax2+1<ax1-ax2+1<0.
所以f(t)>x1

点评 本题考查由f(x)的解析式得到最小值,得到不等式-2<c-1<2,由此得到c的取值范围.由韦达定理得到两个根的差的范围,用做差来判断两数的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)N是棱AB中点,求直线CN与平面MAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面坐标系xOy中,抛物线y2=-2px(p>0)的焦点F与双曲线x2-8y2=8的左焦点重合,点A在抛物线上,且|AF|=6,若P是抛物线准线上一动点,则|PO|+|PA|的最小值为(  )
A.3$\sqrt{5}$B.4$\sqrt{3}$C.3$\sqrt{7}$D.3$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若对任意正实数a,不等式x2≤1+a恒成立,则实数x的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“两条对角线不垂直的四边形不是菱形”的逆否命题是(  )
A.若四边形不是菱形,则它的两条对角线不垂直
B.若四边形的两条对角线垂直,则它是菱形
C.若四边形的两条对角线垂直,则它不是菱形
D.若四边形是菱形,则它的两条对角线垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x>0,y>0,且2x+y=xy.则x+2y的最小值为(  )
A.5B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=sinxcosx将 f(x)的图象向右平移$\frac{φ}{2}$(0<φ<π) 个单位,得到y=g(x)图象且g(x)的一条对称轴是直线x=$\frac{π}{8}$.
(1)求φ;
(2)求函数y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解方程x2-3|x|+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$+$\overrightarrow{2b}$)∥$\overrightarrow{c}$,则k=(  )
A.-8B.2C.-$\frac{1}{2}$D.-$\frac{1}{8}$

查看答案和解析>>

同步练习册答案