分析 (I)由PA⊥平面ABCD得PA⊥CD,由勾股定理的逆定理得出AC⊥CD,故而CD⊥平面PAC;
(II)取PC的中点E,连结BE,ME,NE.可证PC⊥平面ABEM,于是∠CNE为直线CN与平面MAB所成的角.利用勾股定理计算CE,CN即可得出sin∠CNE.
解答
证明:(I)∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD,
∵AB=AC=2,$BC=2\sqrt{2}$.
∴AB2+AC2=BC2,∴AB⊥AC,
∵底面ABCD为平行四边形,∴CD∥AB,
∴CD⊥AC.
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴CD⊥平面PAC.
(II)取PC的中点E,连结BE,ME,NE.
∵M,E分别是PC,PC的中点,
∴ME∥CD,又CD∥AB,
∴EM∥AB,即AB与ME共面.
∵CD∥平面PAC,PC?平面PAC,
∴CD⊥PC,∵CD∥ME,
∴PC⊥ME.
又PB=$\sqrt{P{A}^{2}+A{B}^{2}}$=2$\sqrt{2}$,
∴PB=BC,∵E是PC的中点,
∴BE⊥PC,又BE?平面ABEM,ME?平面ABEM,BE∩ME=E,
∴PC⊥平面ABEM.
∴∠CNE为直线CN与平面MAB所成的角.
∵PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=2$\sqrt{2}$,∴CE=$\frac{1}{2}$PC=$\sqrt{2}$,
∵CN=$\sqrt{A{N}^{2}+A{C}^{2}}$=$\sqrt{5}$,
∴sin∠CNE=$\frac{CE}{CN}$=$\frac{\sqrt{10}}{5}$.
∴直线CN与平面MAB所成角的正弦值为$\frac{\sqrt{10}}{5}$.
点评 本题考查了线面垂直的判定,线面角的计算,作出平面的垂线,找出线面角是解题关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com