精英家教网 > 高中数学 > 题目详情
5.已知实数x,y满足$\left\{\begin{array}{l}x+y-1≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,则$\frac{y}{x-3}$的最小值为$-\frac{1}{3}$.

分析 作出不等式组对应的平面区域,利用直线斜率的定义,利用数形结合进行求解.

解答 解:作出不等式组对应的平面区域如图,
$\frac{y}{x-3}$的几何意义是区域内的点与点E(3,0)的斜率,
由图象知AE的斜率最小,由$\left\{\begin{array}{l}{x+y-1=0}\\{x-y+1=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
即A(0,1),
此时$\frac{y}{x-3}$的最小值为$\frac{1}{0-3}$=$-\frac{1}{3}$,
故答案为:$-\frac{1}{3}$.

点评 本题主要考查线性规划的应用,利用数形结合以及直线斜率公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,an+1-an=n+1(n∈N*),则数列{${\frac{1}{a_n}}$}的前2015项的和为$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥0时,若满足?x>0,f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=alnx-bx2,a,b∈R.若不等式f(x)≥x对所有的b∈(-∞,0],x∈(e,e2]都成立,则a的取值范围是(  )
A.[e,+∞)B.$[\frac{e^2}{2},+∞)$C.$[\frac{e^2}{2},{e^2})$D.[e2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex+ax2-2ax-1.
(Ⅰ)当a=$\frac{1}{2}$时,讨论f(x)的单调性;
(Ⅱ)设函数g(x)=f′(x),讨论g(x)的零点个数;若存在零点,请求出所有的零点或给出每个零点所在的有穷区间,并说明理由(注:有穷区间指区间的端点不含有-∞和+∞的区间).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,BC=2$\sqrt{2}$.
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)N是棱AB中点,求直线CN与平面MAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.过抛物线y2=2px的焦点,倾斜角为$\frac{π}{3}$的直线l交此抛物线于A、B两点.
(1)求直线l的参数方程;
(2)求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正实数m,n满足m+n=1,当$\frac{1}{m}$+$\frac{16}{n}$取得最小值时,曲线y=xα过点P($\frac{m}{5}$,$\frac{n}{4}$),则α的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“两条对角线不垂直的四边形不是菱形”的逆否命题是(  )
A.若四边形不是菱形,则它的两条对角线不垂直
B.若四边形的两条对角线垂直,则它是菱形
C.若四边形的两条对角线垂直,则它不是菱形
D.若四边形是菱形,则它的两条对角线垂直

查看答案和解析>>

同步练习册答案