精英家教网 > 高中数学 > 题目详情
已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是(  )
A、2B、3C、4D、5
分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.
解答:解:如图,设点P到AC,BC的距离分别是x和y,精英家教网
最上方小三角形和最大的那个三角形相似,
它们对应的边有此比例关系,即
x
3
=
4-y
4
4,
所以4x=12-3y,y=
12-4x
3
,求xy最大,也就是那个矩形面积最大.
xy=x•
12-4x
3
=-
4
3
•(x2-3x),
∴当x=
3
2
时,xy有最大值3
故选B.
点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,点A、B的坐标分别为(-2,0)和(2,0),点C在x轴上方.
(Ⅰ)若点C的坐标为(2,3),求以A、B为焦点且经过点C的椭圆的方程;
(Ⅱ)若∠ACB=45°,求△ABC的外接圆的方程;
(Ⅲ)若在给定直线y=x+t上任取一点P,从点P向(Ⅱ)中圆引一条切线,切点为Q.问是否存在一个定点M,恒有PM=PQ?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A、B、C所对的边分别为a、b、c;且a=3
3
,c=2,B=150°,求边b的长和S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,内角A,B,C所对的边分别为a,b,c,且acosC+
3
2
c=b

(Ⅰ)求角A;
(Ⅱ)若a=l,且
3
c-2b=1
,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泸州二模)已知在△ABC中,角A、B、C的对边分别是a、b、c,且tanB=
2-
3
a2+c2-b2
BC
BA
=
1
2

(Ⅰ)求tanB的值;
(Ⅱ)求
2sin2
B
2
+2sin
B
2
cos
B
2
-1
cos(
π
4
-B)
的值.

查看答案和解析>>

同步练习册答案