精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
(3)当a=1时,求f(|x|)的单调区间.

(1) f(x)的最小值是-1, f(x)的最大值是35.  (2) a≤-6或a≥4. (3) f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].

解析试题分析:(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,
由于x∈[-4,6],
∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,      2分
∴f(x)的最小值是f(2)=-1,                        3分
又f(-4)=35,f(6)=15,故f(x)的最大值是35.       4分
(2)由于函数f(x)的图象开口向上,对称轴是x=-a,
所以要使f(x)在[-4,6]上是单调函数,
应有-a≤-4或-a≥6,即a≤-6或a≥4.            6分
(3)当a=1时,f(x)=x2+2x+3,
∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],        8分
且f(x)=,                  10分
∴f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].    12分
考点:本题考查了函数的单调性及最值
点评:一元二次函数的单调性与其对称轴有关,故一元二次函数的最值问题往往利用其单调性求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,
(1)若为奇函数,求的值;
(2)若=1,试证在区间上是减函数;
(3)若=1,试求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求在区间[2,5]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若是函数的极值点,求实数的值;
(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的单调区间;   (2)若恒成立,求实数k的取值范围;
(3)证明:  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求在图象与轴交点处的切线方程;
(2)若在(1,2)上为单调函数,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数处取得极大值,求函数的单调区间
(2)若对任意实数,不等式恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数
(1)若,求实数b,c的值;
(2)若
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于定义在实数集上的两个函数,若存在一次函数使得,对任意的,都有,则把函数的图像叫函数的“分界线”。现已知为自然对数的底数),
(1)求的递增区间;
(2)当时,函数是否存在过点的“分界线”?若存在,求出函数的解析式,若不存在,请说明理由。

查看答案和解析>>

同步练习册答案