精英家教网 > 高中数学 > 题目详情

已知函数,
(1)若为奇函数,求的值;
(2)若=1,试证在区间上是减函数;
(3)若=1,试求在区间上的最小值.

(1)
(2)利用“定义法”证明。在区间上是减函数
(3) 若,由(2)知在区间上是减函数,在区间上,当时,有最小值,且最小值为2。

解析试题分析:(1)当时,,若为奇函数,则
,所以
(2)若,则=
设为, =

,∴>0
所以,,因此在区间上是减函数
(3) 若,由(2)知在区间上是减函数,下面证明在区间上是增函数.
 , =
,


所以 ,
因此在区间上上是增函数
因此,在区间上,当时,有最小值,且最小值为2
考点:函数的奇偶性、单调性及其应用
点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。利用定义法研究函数的单调性,要注意遵循“设,作差,变形,定号,结论”等步骤,关键是变形与定号。函数的单调性的基本应用之一是求函数的最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且,若恒成立.
(1)判断上是增函数还是减函数,并证明你的结论;
(2)若对所有恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)当时,求的单调递减区间;
(2)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)当时,在曲线上是否存在两点,使得曲线在两点处的切线均与直线交于同一点?若存在,求出交点纵坐标的取值范围;若不存在,请说明理由;
(Ⅲ)若在区间存在最大值,试构造一个函数,使得同时满足以下三个条件:①定义域,且;②当时,;③在中使取得最大值时的值,从小到大组成等差数列.(只要写出函数即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线在点处的切线方程为
(1)确定的值
(2)若过点(0,2)可做曲线的三条不同切线,求的取值范围
(3)设曲线在点处的切线都过点(0,2),证明:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2﹣|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(Ⅰ)求实数的值;
(Ⅱ)判断函数的单调性;
(Ⅲ)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)若函数上有极值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+2ax+3,x∈[-4,6].
(1)当a=-2时,求f(x)的最值;
(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
(3)当a=1时,求f(|x|)的单调区间.

查看答案和解析>>

同步练习册答案