精英家教网 > 高中数学 > 题目详情
7.下列命题正确的序号是(1)(2)(4).(其中l,m表示直线,α,β,γ表示平面)
(1)若l∥m,l⊥α,m?β,则α⊥β;
(2)若α⊥γ,β∥γ,则α⊥β;
(3)若l⊥m,l?α,m?β,则α⊥β;
(4)若l⊥m,l⊥α,m⊥β,则α⊥β

分析 利用空间线面位置关系的判定与性质进行判断,或举出反例说明即可.

解答 解:对于(1),∵l∥m,l⊥α,∴m⊥α,又m?β,∴α⊥β,故(1)正确;
对于(2),∵α⊥γ,∴α内存在直线a,使得a⊥γ,
∵β∥γ,∴a⊥β,又a?α,∴α⊥β,故(2)正确;
对于(3),若α∥β,直线l在β内的射影为n,
若n⊥m,则l⊥m,显然符合条件,但α与β不垂直,故(3)错误;
对于(4),若l⊥m,l⊥α,则m∥α或m?α,
又m⊥β,∴α⊥β.故(4)正确.
故答案为:(1)(2)(4).

点评 本题考查了空间线面位置关系的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为(  )日.(结果保留一位小数.参考数据:lg2≈0.30,lg3≈0.48)
A.1.3B.1.5C.2.6D.2.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\left\{\begin{array}{l}x=5cosφ\\ y=3sinφ\end{array}\right.(φ为参数)$的焦点坐标为(  )
A.(±5,0)B.(±4,0)C.(±3,0)D.(0,±4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某市有6条南北向街道,4条东西向街道,图中共有m个矩形,从A点走到B点最短路线的走法有n种,则m,n的值分别为(  )
A.m=90,n=56B.m=30,n=56C.m=90,n=792D.m=30,n=792

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数φ(x)=$\frac{a}{x+1}$,a为常数.
(1)若f(x)=lnx+φ(x),且a=$\frac{9}{2}$,求函数f(x)的单调区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈[1,2],x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=sin(ωx+φ)(ω>0),|φ|<$\frac{π}{2}$)在某一个周期内的单调递减区间是[$\frac{5π}{12}$,$\frac{11π}{12}$].
(1)求f(x)的解析式;
(2)将y=f(x)的图象先向右平移$\frac{π}{6}$个单位,再将图象上所有点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),所得到的图象对用的函数记为g(x),若对于任意一的x∈[$\frac{π}{8}$,$\frac{3π}{8}$],不等式-1<g(x)-m<1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在山脚A测得山顶P的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B,在B处测得山顶P的仰角为75°,则山高h=150($\sqrt{6}$+$\sqrt{2}$)米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|2<x<4},B={x|x2-4x+3>0},则A∩B=(  )
A.(2,3)B.(3,4)C.(1,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对某工厂生产的产品进行质量监测,现随机抽取该工厂生产的某批次产品中的5件进行检测,测得其中x,y两种指标的含量的数据如下:
产品编号12345
指标 x6978667580
指标 y7580777081
(Ⅰ)当该产品中指标x,y满足x≥75且y≥80时,该产品为优等品,求该产品为优等品的概率;
(Ⅱ)若从该产品中随机抽取2件,求出取的2件产品中优等品数的分布列和数学期望.

查看答案和解析>>

同步练习册答案