精英家教网 > 高中数学 > 题目详情
11.已知数列{an}中,a1=1,an+1=2an+1(n∈N*),则a4的值为(  )
A.31B.30C.15D.63

分析 an+1=2an+1(n∈N*),变形为an+1+1=2(an+1),利用等比数列的通项公式即可得出.

解答 解:∵an+1=2an+1(n∈N*),∴an+1+1=2(an+1),
∴数列{an+1}为等比数列,公比与首项都为2.
∴an+1=2×2n-1,可得an=2n-1.
∴a4=24-1=15.
故选:C.

点评 本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=Asin(ωx+φ),其中ω>0,A>0,-$\frac{π}{2}$<φ<0,x∈R且函数f(x)的最小值为-$\frac{\sqrt{2}}{2}$,相邻两条对称轴之间的距离为$\frac{π}{2}$,满足f($\frac{π}{4}$)=$\frac{1}{2}$
(1)求f(x)的解析式;
(2)若对任意实数x∈[$\frac{π}{6}$,$\frac{π}{3}$],不等式f(x)-m<$\frac{3}{2}$恒成立,求实数m的取值范围;
(3)设0<x≤$\frac{π}{2}$,且方程f(x)=m有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从3男1女共4名学生中选出2人参加学校组织的环保活动,则女生被选中的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=sinxcosx+sinx+cosx(x∈R)的最大值是$\frac{1}{2}+\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当x取何值时,复数z=(x2+x-2)+(x2-3x+2)i
(1)是实数?
(2)是纯虚数?
(3)对应的点在第四象限?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.向量$\overrightarrow a=({-1,1}),\overrightarrow b=({1,0})$,若$({\overrightarrow a-\overrightarrow b})⊥({2\overrightarrow a+λ\overrightarrow b})$,则λ=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合U={(x,y)|x∈R,y∈R},A={(x,y)|y=x+1},B={(x,y)|$\frac{y}{x+1}$=1},则A∩∁UB=(  )
A.{(-1,0)}B.{-1}C.{-1,0}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2x-lnx的单调递增区间是$(\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线C:y2=4x的焦点为F,设过点F的直线l交抛物线与A,B两点,且$|{AF}|=\frac{4}{3}$,则|BF|=4.

查看答案和解析>>

同步练习册答案