精英家教网 > 高中数学 > 题目详情
6.当x取何值时,复数z=(x2+x-2)+(x2-3x+2)i
(1)是实数?
(2)是纯虚数?
(3)对应的点在第四象限?

分析 (1)z是实数,则虚部等于0,求解即可得答案;
(2)z是纯虚数,则实部等于0,虚部不等于0,求解即可得答案;
(3)由z对应的点在第四象限,列出不等式组,求解即可得答案.

解答 解:(1)复数z=(x2+x-2)+(x2-3x+2)i,
当z是实数时,x2-3x+2=0,解得x=1或x=2;
(2)当z是纯虚数时,$\left\{\begin{array}{l}{x^2}+x-2=0\\{x^2}-3x+2≠0\end{array}\right.$,解得x=-2;
(3)当对应的点在第四象限时,则$\left\{\begin{array}{l}{{x}^{2}+x-2>0}\\{{x}^{2}-3x+2<0}\end{array}\right.$,解得1<x<2,
∴x的取值范围为1<x<2.

点评 本题考查了复数的基本概念,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知sinα=$\frac{\sqrt{5}}{5}$,$\frac{π}{2}$≤α≤π,则tanα=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3+2x2-3的导函数为f′(x),则f′(-2)等于(  )
A.4B.6C.10D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中(图),$A=\frac{π}{3},cosC=\frac{{2\sqrt{7}}}{7},BC=\sqrt{7},\overrightarrow{AD}=2\overrightarrow{DC}$.
(Ⅰ)求边AC的长;
(Ⅱ)求sin∠CBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R
(1)当a=0时,求函数在(1,f(1)))处的切线方程
(2)令g(x)=f(x)-ax+1,求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}中,a1=1,an+1=2an+1(n∈N*),则a4的值为(  )
A.31B.30C.15D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.(x2-$\frac{1}{x}$)6的展开式,x6的系数为(  )
A.15B.6C.-6D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足不等式组$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$,则目标函数z=x+4y的最大值是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{4}=1$(a>2)的离心率为$\frac{{\sqrt{3}}}{3}$.斜率为k的直线l过点E(0,1),且与椭圆相交于C,D两点.
(1)求椭圆方程.
(2)若直线l与x轴相交于点G,且$\overline{GC}=\overline{DE}$,求k的值.
(3)求△COD的面积的最大值.

查看答案和解析>>

同步练习册答案