精英家教网 > 高中数学 > 题目详情
16.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{4}=1$(a>2)的离心率为$\frac{{\sqrt{3}}}{3}$.斜率为k的直线l过点E(0,1),且与椭圆相交于C,D两点.
(1)求椭圆方程.
(2)若直线l与x轴相交于点G,且$\overline{GC}=\overline{DE}$,求k的值.
(3)求△COD的面积的最大值.

分析 (1)由椭圆的离心率结合隐含条件求得a,c的值,则椭圆方程可求;
(2)由题意设出直线方程,和椭圆方程联立,化为关于x的一元二次方程后利用根与系数的关系可得C,D两点的横坐标的和与积,把$\overline{GC}=\overline{DE}$转化为点的横坐标间的关系,代入根与系数的关系后求得k值;
(3))△COD的面积s=$\frac{1}{2}×OE×$|x1-x2|=$\frac{3\sqrt{4{k}^{2}+2}}{2+3{k}^{2}}$=$\frac{2\sqrt{2}•\sqrt{2{k}^{2}+1}}{\frac{3}{2}(2{k}^{2}+1)+\frac{1}{2}}$,令$\sqrt{2{k}^{2}+1}=t$,(t≥1),则s=$\frac{2\sqrt{2}t}{\frac{3}{2}{t}^{2}+\frac{1}{2}}=\frac{2\sqrt{2}}{\frac{3}{2}t+\frac{1}{2t}}≤\frac{2\sqrt{6}}{3}$.

解答 (1)解:由e=$\frac{c}{a}=\frac{\sqrt{3}}{3}$,得a2=3c2,又b2=4,a2=b2+c2
∴c2=2,a2=6.
则椭圆的方程为$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{4}=1$.
(2)解:如图,由题意可知,直线l的斜率存在且不为0,
设其方程为y=kx+1,
由$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得(2+3k2)x2+6kx-9=0.
再设C(x1,y1),D(x2,y2),
${x}_{1}+{x}_{2}=\frac{-6k}{2+3{k}^{2}},{x}_{1}{x}_{2}=\frac{-9}{2+3{k}^{2}}$.
∵直线l与x轴相交于点G,且$\overline{GC}=\overline{DE}$,则x1=xG-x2,即x1+x2=xG
由y=kx+1,取y=0可得${x}_{G}=-\frac{1}{k}$,$\frac{-6k}{2+3{k}^{2}}=-\frac{1}{k}$,解得k=$±\frac{\sqrt{6}}{3}$;
(3)由(2)得|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}=\frac{6\sqrt{4{k}^{2}+2}}{2+3{k}^{2}}$,
△COD的面积s=$\frac{1}{2}×OE×$|x1-x2|=$\frac{3\sqrt{4{k}^{2}+2}}{2+3{k}^{2}}$=$\frac{2\sqrt{2}•\sqrt{2{k}^{2}+1}}{\frac{3}{2}(2{k}^{2}+1)+\frac{1}{2}}$,
令$\sqrt{2{k}^{2}+1}=t$,(t≥1),则s=$\frac{2\sqrt{2}t}{\frac{3}{2}{t}^{2}+\frac{1}{2}}=\frac{2\sqrt{2}}{\frac{3}{2}t+\frac{1}{2t}}≤\frac{2\sqrt{6}}{3}$,
当$t=\sqrt{3},即$k=±1时,取等号,故△COD的面积的最大值为$\frac{2\sqrt{6}}{3}$.

点评 本题考查了椭圆的方程,直线与椭圆的位置关系,面积问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.当x取何值时,复数z=(x2+x-2)+(x2-3x+2)i
(1)是实数?
(2)是纯虚数?
(3)对应的点在第四象限?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xex-lnx(ln2≈-0.693,$\sqrt{e}$≈1.648,均为不足近似值)
(1)当x≥1时,判断函数f(x)的单调性;
(2>证明:当x>0时,不等式f(x)>$\frac{27}{20}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果双曲线的焦距、虚轴长、实轴长成等差数列,则离心率等于$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正数m,n的等差中项是2,则mn的最大值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线C:y2=4x的焦点为F,设过点F的直线l交抛物线与A,B两点,且$|{AF}|=\frac{4}{3}$,则|BF|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=1,曲线C2的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数).
(1)求曲线C1上的点到曲线C2的距离的最小值;
(2)把曲线C1上的各点的横坐标扩大为原来的2倍,纵坐标扩大原来的$\sqrt{3}$倍,得到曲线C1′,设P(-1,1),曲线C2与C1′交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某学校为了加强学生的安全教育,对学校旁边A,B两个路口进行了8天的监测调查,得到每天路口不按交通规则过马路的学生人数(如茎叶图所示),且A路口数据的平均数比B路口数据的平均数小2.
(1)求出A路口8个数据的中位数和茎叶图中m的值;
(2)在B路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1、F2,渐近线方程是:y=±$\frac{{2\sqrt{5}}}{5}$x,点A(0,b),且△AF1F2的面积为6.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)直线l:y=kx+m(k≠0,m≠0)与双曲线C交于不同的两点P,Q,若|AP|=|AQ|,求实数m的取值范围.

查看答案和解析>>

同步练习册答案