精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R
(1)当a=0时,求函数在(1,f(1)))处的切线方程
(2)令g(x)=f(x)-ax+1,求g(x)的极值.

分析 (1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;
(2)求出g(x)的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数的极值即可.

解答 解:(1)a=0时,f(x)=lnx+x,f′(x)=$\frac{1}{x}$+1,
f(1)=1,f′(1)=2,
故切线方程是:y-1=2(x-1),
整理得:y=2x-1;
(2)g(x)=lnx-$\frac{1}{2}$ax2+x-ax+1,(x>0),
g′(x)=$\frac{1}{x}$-ax+1-a=$\frac{(-ax+1)(x+1)}{x}$,
当a≤0时,g′(x)>0,g(x)在(0,+∞)递增,
函数无极值;
当a>0时,令g′(x)>0,解得:x<$\frac{1}{a}$,
令g′(x)<0,解得:x>$\frac{1}{a}$,
故g(x)在(0,$\frac{1}{a}$)递增,在($\frac{1}{a}$,+∞)递减,
故g(x)在x=$\frac{1}{a}$处取得极大值$\frac{1}{2a}$-lna,无极小值.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow a$、$\overrightarrow b$是夹角为600的单位向量,$\overrightarrow c=3\overrightarrow a+2\overrightarrow b$,$\overrightarrow d=m\overrightarrow a-4\overrightarrow b$,(1)求$|{\overrightarrow a+3\overrightarrow b}|$;(2)当m为何值时,$\overrightarrow c$与$\overrightarrow d$平行?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.则二项式(3$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中含x2项的系数是-1458.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$a={5^{-\frac{1}{2}}},b={log_2}$3,c=ln2,则(  )
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}满足:an+1=2an+2,a1=2.
(Ⅰ)证明:数列{an+2}是等比数列,并求数列{an}的通项公式;
(Ⅱ)证明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}≤1-\frac{1}{2^n}$,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当x取何值时,复数z=(x2+x-2)+(x2-3x+2)i
(1)是实数?
(2)是纯虚数?
(3)对应的点在第四象限?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC中,角A,B,C对边分别为a,b,c,C=120°,a=2b,则tanA=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴AB为的长为6,离心率为$\frac{1}{3}$.
(1)求椭圆E方程;
(2)过椭圆E的右焦点F的直线与椭圆E交于M,N两点,记△AMB的面积为S1,△ANB的面积为S2,当S1-S2取得最大值时,求S1+S2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知正数m,n的等差中项是2,则mn的最大值为(  )
A.1B.2C.4D.8

查看答案和解析>>

同步练习册答案