精英家教网 > 高中数学 > 题目详情
13.已知△ABC中,角A,B,C对边分别为a,b,c,C=120°,a=2b,则tanA=$\frac{\sqrt{3}}{2}$.

分析 利用正弦定理化简a=2b,利用三角形内角和定理结合和与差的公式即可得解.

解答 解:∵C=120°,a=2b,
由正弦定理:sinA=2sinB
即sinA=2sin(60°-A)
得:sinA=2sin60°cosA-2cos60°sinA
∴2sinA=$\sqrt{3}$cosA,
则tanA=$\frac{\sqrt{3}}{2}$.
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查了正弦定理和三角形内角和定理,结合和与差的公式的计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.欲证$\sqrt{2}-\sqrt{3}<\sqrt{6}-\sqrt{7}$,只需证(  )
A.${({\sqrt{2}+\sqrt{7}})^2}<{({\sqrt{3}+\sqrt{6}})^2}$B.${({\sqrt{2}-\sqrt{6}})^2}<{({\sqrt{3}-\sqrt{7}})^2}$C.${({\sqrt{2}-\sqrt{3}})^2}<{({\sqrt{6}-\sqrt{7}})^2}$D.${({\sqrt{2}-\sqrt{3}-\sqrt{6}})^2}<{({-\sqrt{7}})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:?x∈R,x+1≤ex,则¬p(  )
A.?x∈R,x+1>exB.?x∈R,x+1≥exC.?x∈R,x+1≥exD.?x∈R,x+1>ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R
(1)当a=0时,求函数在(1,f(1)))处的切线方程
(2)令g(x)=f(x)-ax+1,求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=\frac{a}{3}{x^3}-\frac{3}{2}{x^2}+(a+1)x+1$,其中a为实数.
(Ⅰ)若函数f(x)在x=1处取得极值,求a的值;
(Ⅱ)若不等式f'(x)<-4x+2+a对任意x∈(1,+∞)都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.(x2-$\frac{1}{x}$)6的展开式,x6的系数为(  )
A.15B.6C.-6D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tan(x+$\frac{π}{2}$)=5,则$\frac{1}{sinxcosx}$=(  )
A.$\frac{26}{5}$B.-$\frac{26}{5}$C.±$\frac{26}{5}$D.-$\frac{5}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,记z=ax-y(其中a>0)的最小值为f(a),若f(a)≥-$\frac{2}{5}$,则实数a的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{b}{a}cosC=({3-\frac{c}{a}})cosB$.
(1)求sinB的值;
(2)若D为AC的中点,且BD=1,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案