| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得f(a),再由f(a)≥-$\frac{2}{5}$,求得实数a的最小值.
解答 解:由实数x,y满足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=1}\\{3x+5y-25=0}\end{array}\right.$,得A(1,$\frac{22}{5}$),
由z=ax-y,得y=ax-z,由图可知,当直线y=ax-z过A时,直线在y轴上的截距最大,
z有最小值为f(a)=a-$\frac{22}{5}$.
由f(a)≥-$\frac{2}{5}$,得a-$\frac{22}{5}$≥-$\frac{2}{5}$,∴a≥4,即a的最小值为4,
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com