精英家教网 > 高中数学 > 题目详情
17.函数f(x)=log2(x-1)-$\frac{1}{{\sqrt{2-x}}}$的定义域为(1,2).

分析 根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.

解答 解:函数f(x)=log2(x-1)-$\frac{1}{{\sqrt{2-x}}}$,
∴$\left\{\begin{array}{l}{x-1>0}\\{2-x>0}\end{array}\right.$,
解得1<x<2;
∴f(x)的定义域为(1,2).
故选:(1,2).

点评 本题考查了根据函数解析式求定义域的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD,底面ABCD是边长为2的菱形,$∠ABC=\frac{π}{3}$,且PA⊥平面ABCD.
(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)设点E是线段AP的中点,且AE=1,求点E到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=\frac{a}{3}{x^3}-\frac{3}{2}{x^2}+(a+1)x+1$,其中a为实数.
(Ⅰ)若函数f(x)在x=1处取得极值,求a的值;
(Ⅱ)若不等式f'(x)<-4x+2+a对任意x∈(1,+∞)都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tan(x+$\frac{π}{2}$)=5,则$\frac{1}{sinxcosx}$=(  )
A.$\frac{26}{5}$B.-$\frac{26}{5}$C.±$\frac{26}{5}$D.-$\frac{5}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+a|+|x-2|.
(1)若f(x)的最小值为4,求实数a的值;
(2)若-1≤x≤0时,不等式f(x)≤|x-3|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,记z=ax-y(其中a>0)的最小值为f(a),若f(a)≥-$\frac{2}{5}$,则实数a的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.$\frac{1}{2}$B.-3C.$\frac{3}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x≥y>0,若存在实数a,b满足0≤a≤x,0≤b≤y,且(x-a)2+(y-b)2=x2+b2=y2+a2.则$\frac{y}{x}$的最大值为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

查看答案和解析>>

同步练习册答案